OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 2 — Jun. 1, 2011
  • pp: 164–172

Ag nanoparticles embedded in glass by two-step ion exchange and their SERS application

Ya Chen, Lasse Karvonen, Antti Säynätjoki, Changgeng Ye, Ari Tervonen, and Seppo Honkanen  »View Author Affiliations

Optical Materials Express, Vol. 1, Issue 2, pp. 164-172 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1261 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Silver nanoparticles embedded in glass are prepared by a two-step ion exchange process, where silver ions are introduced into glass in silver ion exchange, and reduced into metallic silver in subsequent potassium ion exchange. The formation of the particles can be explained by the combination effect of the galvanic replacement reaction and the electrolytic deposition. The formed particles are characterized by optical absorption measurements, transmission electron microscopy and atomic force microscopy. Their application in SERS is demonstrated, and the optimal surface features in terms of SERS enhancement are also discussed.

© 2011 OSA

OCIS Codes
(160.4236) Materials : Nanomaterials
(220.4241) Optical design and fabrication : Nanostructure fabrication
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:

Original Manuscript: February 28, 2011
Revised Manuscript: April 7, 2011
Manuscript Accepted: April 15, 2011
Published: April 29, 2011

Ya Chen, Lasse Karvonen, Antti Säynätjoki, Changgeng Ye, Ari Tervonen, and Seppo Honkanen, "Ag nanoparticles embedded in glass by two-step ion exchange and their SERS application," Opt. Mater. Express 1, 164-172 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photon. Rev. 2(3), 136–159 (2008). [CrossRef]
  2. J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Zhang, and R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications,” Faraday Discuss. 132, 9–26 (2006). [CrossRef] [PubMed]
  3. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997). [CrossRef] [PubMed]
  4. Q. Yu, P. Guan, D. Qin, G. Golden, and P. M. Wallace, “Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays,” Nano Lett. 8(7), 1923–1928 (2008). [CrossRef] [PubMed]
  5. S. J. Lee, Z. Q. Guan, H. X. Xu, and M. Moskovits, “Surface-enhanced Raman spectroscopy and nanogeometry: The plasmonic origin of SERS,” J. Phys. Chem. C 111(49), 17985–17988 (2007). [CrossRef]
  6. Z. G. Xie, J. Tao, Y. H. Lu, K. Q. Lin, J. Yan, P. Wang, and H. Ming, “Polymer optical fiber SERS sensor with gold nanorods,” Opt. Commun. 282(3), 439–442 (2009). [CrossRef]
  7. L. M. Tong, M. Righini, M. U. Gonzalez, R. Quidant, and M. Käll, “Optical aggregation of metal nanoparticles in a microfluidic channel for surface-enhanced Raman scattering analysis,” Lab Chip 9(2), 193–195 (2009). [CrossRef] [PubMed]
  8. C. H. Lin, L. Jiang, H. Xiao, S. J. Chen, and H. L. Tsai, “Surface-enhanced Raman scattering microchip fabricated by femtosecond laser,” Opt. Lett. 35(17), 2937–2939 (2010). [CrossRef] [PubMed]
  9. M. Dubiel, H. Hofmeister, and E. Wendler, “Formation of nanoparticles in soda-lime glasses by single and double ion implantation,” J. Non-Cryst. Solids 354(2-9), 607–611 (2008). [CrossRef]
  10. B. Akkopru and C. Durucan, “Preparation and microstructure of sol-gel derived silver-doped silica,” J. Sol-Gel Sci. Technol. 43(2), 227–236 (2007). [CrossRef]
  11. J. Zhang, W. Dong, J. W. Sheng, J. W. Zheng, J. Li, L. Qiao, and L. Q. Jiang, “Silver nanoclusters formation in ion-exchanged glasses by thermal annealing, UV-laser and X-ray irradiation,” J. Cryst. Growth 310(1), 234–239 (2008). [CrossRef]
  12. Y. Chen, J. Jaakola, A. Säynätjoki, A. Tervonen, and S. Honkanen, “SERS-active silver nanoparticles in ion-exchanged glass,” J. Nonlinear Opt. Phys. 19(04), 527–533 (2010). [CrossRef]
  13. Y. Chen, J. Jaakola, Y. L. Ge, A. Säynätjoki, A. Tervonen, S. P. Hannula, and S. Honkanen, “In situ fabrication of waveguide-compatible glass-embedded silver nanoparticle patterns by masked ion-exchange process,” J. Non-Cryst. Solids 355(45-47), 2224–2227 (2009). [CrossRef]
  14. Y. Chen, J. Jaakola, A. Säynätjoki, A. Tervonen, and S. Honkanen, “Glass-embedded silver nanoparticle patterns by masked ion-exchange process for surface-enhanced Raman scattering,” J. Raman Spectrosc. (to be published).
  15. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, “Numerical recipes in C, The art of scientific computing,” (Cambridge University Press, Second Edition, 1992), http: //www.nr.com .
  16. X. M. Lu, J. Y. Chen, S. E. Skrabalak, and Y. N. Xia, “Galvanic replacement reaction: a simple and powerful route to hollow and porous metal nanostructures,” Proc. IMechE, Part N: J. Nanoengineering and Nanosystems 221(1), 1–16 (2007). [CrossRef]
  17. G. X. Zhang, S. H. Sun, R. Y. Li, and X. L. Sun, “New insight into the conventional replacement reaction for the large-scale synthesis of various metal nanostructures and their formation mechanism,” Chemistry 16(35), 10630–10634 (2010). [CrossRef] [PubMed]
  18. S. S. Wong, A. T. Woolley, T. W. Odom, J. L. Huang, P. Kim, D. V. Vezenov, and C. M. Lieber, “Single-walled carbon nanotube probes for high-resolution nanostructure imaging,” Appl. Phys. Lett. 73(23), 3465–3467 (1998). [CrossRef]
  19. T. Larsen, K. Moloni, F. Flack, M. A. Eriksson, M. G. Lagally, and C. T. Black, “Comparison of wear characteristics of etched-silicon and carbon nanotube atomic-force microscopy probes,” Appl. Phys. Lett. 80(11), 1996–1998 (2002). [CrossRef]
  20. M. Carmichael, R. Vidu, A. Maksumov, A. Palazoglu, and P. Stroeve, “Using wavelets to analyze AFM images of thin films: surface micelles and supported lipid bilayers,” Langmuir 20(26), 11557–11568 (2004). [CrossRef] [PubMed]
  21. H. R. Gutiérrez, D. Nakabayashi, P. C. Silva, J. R. R. Bortoleto, V. Rodrigues, J. H. Clerici, M. A. Cotta, and D. Ugarte, “Carbon nanotube probe resolution: a quantitative analysis using Fourier Transform,” Phys. Status Solidi A-Appl, Mat. 201, 888–893 (2004). [CrossRef]
  22. M. I. Stockman, V. M. Shalaev, M. Moskovits, R. Botet, and T. F. George, “Enhanced Raman scattering by fractal clusters: Scale-invariant theory,” Phys. Rev. B Condens. Matter 46(5), 2821–2830 (1992). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited