OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 2 — Jun. 1, 2011
  • pp: 192–200

Manipulating and controlling the evanescent field within optical waveguides using high index nanolayers [Invited]

John Canning, Whayne Padden, Danijel Boskovic, Masood Naqshbandi, Hank de Bruyn, and Maxwell J. Crossley  »View Author Affiliations

Optical Materials Express, Vol. 1, Issue 2, pp. 192-200 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1189 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Controlling the evanescent field within platform waveguide technologies underpins waveguide nanophotonics and is critical to optimising the interaction with integrated specialised materials or devices under test. Unfortunately, this interaction is often small since the evanescent field is a fraction of the total optical field. Here we propose and demonstrate, through simulation and experiment, how the waveguide evanescent field can be enhanced substantially by using high index interface layers, which draw out the optical field in the probe vicinity taking advantage of field localisation. This can be further enhanced by extended resonant and gallery modes within the channels of a structured cylindrical waveguide. Several orders of magnitude increased sensitivity with minimal added insertion loss is obtained using self-assembled layers of TiO2 (B) nanoparticles and porphyrin within a silica structured optical fibre. The combination of novel photonics with specialty material integration highlights the potential scope for physics, chemistry, sensing and materials research.

© 2011 OSA

OCIS Codes
(130.0250) Integrated optics : Optoelectronics
(280.1415) Remote sensing and sensors : Biological sensing and sensors
(160.4236) Materials : Nanomaterials

ToC Category:
Materials for Fiber Optics

Original Manuscript: February 28, 2011
Revised Manuscript: April 19, 2011
Manuscript Accepted: April 25, 2011
Published: May 3, 2011

Virtual Issues
Advances in Optical Materials (2011) Optical Materials Express

John Canning, Whayne Padden, Danijel Boskovic, Masood Naqshbandi, Hank de Bruyn, and Maxwell J. Crossley, "Manipulating and controlling the evanescent field within optical waveguides using high index nanolayers," Opt. Mater. Express 1, 192-200 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, M. Giordano, and G. Guerra, “Coated long-period fiber gratings as high-sensitivity optochemical sensors,” J. Lightwave Technol. 24(4), 1776–1786 (2006). [CrossRef]
  2. C. Martelli, J. Canning, J. R. Reimers, M. Sintic, D. Stocks, T. Khoury, and M. J. Crossley, “Evanescent-field spectroscopy using structured optical fibers: detection of charge-transfer at the porphyrin-silica interface,” J. Am. Chem. Soc. 131(8), 2925–2933 (2009). [CrossRef] [PubMed]
  3. P. C. Goodwin, “GFP biofluorescence: imaging gene expression and protein dynamics in living cells: design considerations for a fluorescence imaging laboratory,” Ch. 20 in Methods in Cell Biology58, 343–367 (1998).
  4. R. A. Hoebe, C. H. Van Oven, T. W. J. Gadella, P. B. Dhonukshe, C. J. Van Noorden, and E. M. Manders, “Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging,” Nat. Biotechnol. 25(2), 249–253 (2007). [CrossRef] [PubMed]
  5. P. S. Dittrich and A. Manz, “Lab-on-a-chip: microfluidics in drug discovery,” Nat. Rev. Drug Discov. 5(3), 210–218 (2006). [CrossRef] [PubMed]
  6. J. Canning, “New trends in structured optical fibres for telecommunications and sensing”, Proc. Joint 5th Int. Conf. on Optical Communications and Networks & 2nd Int. Symp. on Advances and Trends in Fiber Optics and Applications (ICOCN/ATFO 2006), (Invited paper) Chengdu, China, (2006).
  7. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007). [CrossRef] [PubMed]
  8. I. M. White, H. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, “Refractometric sensors for lab-on-a-chip based on optical ring resonators,” Sensors (Basel Switzerland) 7, 28–35 (2007).
  9. P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. 68(9), 1196–1201 (1978). [CrossRef]
  10. J. Canning, “Diffraction-free mode generation and propagation in optical waveguides,” Opt. Commun. 207(1-6), 35–39 (2002). [CrossRef]
  11. J. Canning, “Fresnel optics inside optical fibres”, in Photonics Research Developments, Ch. 5 (Nova Science Publishers, United States, 2008).
  12. A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibres (Kluwer Academic Publishers, The Netherlands, 2003).
  13. B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic bandgap fiber-based Surface Plasmon Resonance sensors,” Opt. Express 15(18), 11413–11426 (2007). [CrossRef] [PubMed]
  14. D. Kácik, I. Turek, I. Martincek, J. Canning, and K. Lyytikainen, “The role of diffraction in determining the short wavelength losses edge of photonic crystal fibres”, Proc. Joint Bragg Gratings, Photosensitivity and Poling (BGPP 2005)/Australian Conf. on Optical Fibre Tech. (ACOFT 2005), Sydney, Australia, (2005)
  15. J. Canning, M. Kristensen, N. Skivesen, C. Martelli, A. Tetu, and L. H. Frandsen, “Spectrally narrow polarisation conversion in a slow-light photonic crystal waveguide,” J. European Opt. Soc. 4, 09019 (2009). [CrossRef]
  16. N. Skivesen, J. Canning, M. Kristensen, C. Martelli, A. Tetu, and L. H. Frandsen, “Photonic crystal waveguide biosensors”, (Invited) Con. On Optical Fiber communication/National Fiber Optic Engineers Conference, 2008. (OFC/NFOEC 2008), San Diego, USA, paper OTuK2, 1–3, (2008).
  17. N. Skivesen, A. Têtu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, “Photonic-crystal waveguide biosensor,” Opt. Express 15(6), 3169–3176 (2007). [CrossRef] [PubMed]
  18. M. C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104(1), 293–346 (2004). [CrossRef] [PubMed]
  19. T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A Physicochem. Eng. Asp. 171(1-3), 115–130 (2000). [CrossRef]
  20. V. R. Almeida, Q. F. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004). [CrossRef] [PubMed]
  21. Q. F. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett. 29(14), 1626–1628 (2004). [CrossRef] [PubMed]
  22. C. Martelli and J. Canning, “Fresnel fibers for sensing”, Proc. Optical Fiber Sensors (OFS 2006), Cancun, Mexico (2006). OSA Technical Digest (CD) (Optical Society of America 2006), post-deadline paper ThF5.
  23. G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photonics 1(2), 115–118 (2007). [CrossRef]
  24. Y. Ruan, H. Ebendorff-Heidepriem, S. Afshar, and T. M. Monro, “Light confinement within nanoholes in nanostructured optical fibers,” Opt. Express 18(25), 26018–26026 (2010). [CrossRef] [PubMed]
  25. J. Canning, E. Buckley, and K. Lyytikainen, “Propagation in air by field superposition of scattered light within a Fresnel fiber,” Opt. Lett. 28(4), 230–232 (2003). [CrossRef] [PubMed]
  26. N. A. Issa and L. Poladian, “Vector wave expansion method for leaky modes of microstructured optical fibers,” J. Lightwave Technol. 21(4), 1005–1012 (2003). [CrossRef]
  27. C. Martelli, “COMSOL verification of ABCD Method for light localisation within nanometer holes”, Unpublished, (2010).
  28. C. M. Rollinson, S. T. Huntington, B. C. Gibson, and J. Canning, “Fractal fibre for enhanced throughput SNOM probes”, in Trends in Photonics Ch. 12 (Ed. J. Canning, Research Signpost, http://www.ressign.com/ , 2010).
  29. C. M. Rollinson, S. T. Huntington, B. C. Gibson, S. Rubanov, and J. Canning, “Characterization of nanoscale features in tapered fractal and photonic crystal fibers,” Opt. Express 19(3), 1860–1865 (2011). [CrossRef] [PubMed]
  30. P. Abgrall and N.-T. Nguyen, NanoFluidics (Artech House, United States, 2009).
  31. M. Jokinen, M. Pätsi, H. Rahiala, T. Peltola, M. Ritala, and J. B. Rosenholm, “Influence of sol and surface properties on in vitro bioactivity of sol-gel-derived TiO2 and TiO2-SiO2 films deposited by dip-coating method,” J. Biomed. Mater. Res. 42(2), 295–302 (1998). [CrossRef] [PubMed]
  32. J. Papachryssanthou, E. Bordes, A. Vejux, P. Courtine, R. Marchand, and M. Tournoux, “TiO2(B), a new support for V2O5 in the oxidation of O-xylene,” Catal. Today 1(1-2), 219–227 (1987). [CrossRef]
  33. G. Betz, H. Tributsch, and R. Marchand, “Hydrogen insertion (intercalation) and light induced proton exchange at TiO2(B) –electrodes,” J. Appl. Electrochem. 14(3), 315–322 (1984). [CrossRef]
  34. A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes-part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006). [CrossRef]
  35. S. Blair and Y. Chen, “Resonant-enhanced evanescent-wave fluorescence biosensing with cylindrical optical cavities,” Appl. Opt. 40(4), 570–582 (2001). [CrossRef] [PubMed]
  36. C. Martelli, J. Canning, B. C. Gibson, and S. T. Huntington, “Bend loss in structured optical fibres,” Opt. Express 15(26), 17639–17644 (2007). [CrossRef] [PubMed]
  37. S. Y. Chae, M. K. Park, S. K. Lee, T. Y. Kim, S. K. Kim, and W. I. Lee, “Preparation of size-controlled TiO2 nanoparticles and derivation of optically transparent photocatalytic films,” Chem. Mater. 15(17), 3326–3331 (2003). [CrossRef]
  38. R. Marchand, L. Brohan, and M. Tournoux, “A new form of titanium dioxide and the potassium octatitanate K2Ti8O17,” Mater. Res. Bull. 15(8), 1129–1133 (1980). [CrossRef]
  39. R. Yoshida, Y. Suzuki, and S. Yoshikawa, “Syntheses of TiO2 nanowires and TiO2 anatase nanowires by hydrothermal and post-heat treatments,” J. Solid State Chem. 178(7), 2179–2185 (2005). [CrossRef]
  40. A. Kathiravan and R. Renganathan, “Effect of anchoring group on the photosensitisation of colloidal TiO2 nanoparticles with porphyrins,” J. Colloid Interface Sci. 331(2), 401–407 (2009). [CrossRef] [PubMed]
  41. C. F. Lo, L. Luo, E. W. J. Diau, I. J. Chang, and C. Y. Lin, “Evidence for the assembly of carboxyphenylethynyl zinc porphyrins on nanocrystalline TiO2 surfaces,” Chem. Commun. (Camb.) (13), 1430–1432 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited