OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 2 — Jun. 1, 2011
  • pp: 293–304

Primary photo-events in a metastable photomerocyanine of spirooxazines

R. Sai Santosh Kumar, Larry Lüer, Dario Polli, Michele Garbugli, and Guglielmo Lanzani  »View Author Affiliations


Optical Materials Express, Vol. 1, Issue 2, pp. 293-304 (2011)
http://dx.doi.org/10.1364/OME.1.000293


View Full Text Article

Enhanced HTML    Acrobat PDF (1773 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the ultrafast excited-state relaxation dynamics of the metastable photo-merocyanine (open-form) isomer of spiro-phenantroxazine, measured by pump and probe spectroscopy with sub-40-fs temporal resolution. We found that the photo-induced yield for ring-closure is negligible, and that the excited-state lifetime is only on the order of 300 fs. Relaxation leads to the non-adiabatic formation of a hot ground state (HGS). In this state, a coherent oscillation with 45 cm−1 frequency is present, showing strong anharmonicity. We attribute it to the motion (torsion/bending) of the molecular backbone attempting geometric relaxation to the close form. The strength of the coherent oscillation and the subsequent spectral relaxation in the HGS, together with the ultrashort lifetime, points to a crossing through a conical intersection (CI). We conclude that excited-states on the merocyanine form pass through a CI that is different from the one that would lead to ring-closure. We discuss design rules for the spiro-oxazine class, allowing for bidirectional switching avoiding this parasitic CI.

© 2011 OSA

OCIS Codes
(160.2900) Materials : Optical storage materials
(160.4890) Materials : Organic materials
(320.7150) Ultrafast optics : Ultrafast spectroscopy

ToC Category:
Organics and Polymers

History
Original Manuscript: April 12, 2011
Revised Manuscript: May 20, 2011
Manuscript Accepted: May 23, 2011
Published: May 27, 2011

Citation
R. Sai Santosh Kumar, Larry Lüer, Dario Polli, Michele Garbugli, and Guglielmo Lanzani, "Primary photo-events in a metastable photomerocyanine of spirooxazines," Opt. Mater. Express 1, 293-304 (2011)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-2-293


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. C. Crano and R. J. Guglielmetti, Organic Photochromic and Thermochromic Compounds, Kluwer Academic Publishers, New York, 2002.
  2. E. Fischer and Y. Hirshberg, “Formation of coloured forms of spirans by low-temperature irradiation,” J. Chem. Soc. 868, 4522–4524 (1952).
  3. N. Tamai and H. Miyasaka, “Ultrafast dynamics of photochromic systems,” Chem. Rev. 100(5), 1875–1890 (2000). [CrossRef] [PubMed]
  4. M. Garavelli, F. Bernardi, M. Olivucci, T. Vreven, S. Klein, P. Celani, and M. A. Robb, “Potential-energy surfaces for ultrafast photochemistry static and dynamic aspects,” Faraday Discuss. 110, 51–70 (1998). [CrossRef]
  5. B. G. Levine and T. J. Martínez, “Isomerization through conical intersections,” Annu. Rev. Phys. Chem. 58(1), 613–634 (2007). [CrossRef] [PubMed]
  6. D. R. Yarkony, “Diabolical conical intersections,” Rev. Mod. Phys. 68(4), 985–1013 (1996). [CrossRef]
  7. M. A. Robb, F. Bernardi, and M. Olivucci, “Conical intersections as a mechanistic feature of organic photochemistry,” Pure Appl. Chem. 67(5), 783–789 (1995). [CrossRef]
  8. H. Dürr, H. B-Laurent, Photochromism: Molecules and Systems, Elsevier, New York, 2003.
  9. V. A. Lokshin, A. Samat, and A. V. Metelitsa, “Spirooxazines: synthesis, structure, spectral and photochromic properties,” Russ. Chem. Rev. 71(11), 893–916 (2002) (and references therein). [CrossRef]
  10. G. Berkovic, V. Krongauz, and V. Weiss, “Spiropyrans and spirooxazines for memories and switches,” Chem. Rev. 100(5), 1741–1754 (2000). [CrossRef] [PubMed]
  11. P. Andersson, N. D. Robinson, and M. Berggren, “Switchable charge traps in polymer diodes,” Adv. Mater. (Deerfield Beach Fla.) 17(14), 1798–1803 (2005). [CrossRef]
  12. S. Schneider, A. Mindl, G. Elfinger, and M. Melzig, “Photochromism of spirooxazines. 1. Investigation of the primary processes in the ring-opening reactions by picoseconds time-resolved absorption and emission spectroscopy,” Ber. Bunsenges. Phys. Chem 91, 1222 (1987).
  13. S. Aramaki and G. H. Atkinson, “Spirooxazine photochromism: picosecond time-resolved Raman and absorption spectroscopy,” Chem. Phys. Lett. 170(2-3), 181–186 (1990). [CrossRef]
  14. N. Tamai and M. Masuhara, “Femtosecond transient absorption spectroscopy of a spirooxazine photochromic reaction,” Chem. Phys. Lett. 191(1-2), 189–194 (1992). [CrossRef]
  15. S. A. Antipin, A. N. Petrukhin, F. E. Gostev, V. S. Marevtsev, A. A. Titov, V. A. Barachevsky, Yu. P. Strokach, and O. M. Sarkisov, “Femtosecond transient absorption spectroscopy of non-substituted photochromic spirocompounds,” Chem. Phys. Lett. 331(5-6), 378–386 (2000). [CrossRef]
  16. F. Maurel, J. Aubard, P. Millie, J. P. Dognon, M. Rajzmann, R. Guglielmetti, and A. Samat, “Quantum chemical study of the photocoloration reaction in the napthoxazine series,” J. Phys. Chem. A 110(14), 4759–4771 (2006). [CrossRef] [PubMed]
  17. G. Buntinx, S. Foley, C. Lefumeux, V. Lokshin, O. Poizat, and A. Samat, “Evidence for a photophysical deactivation pathway competing with the photochromic transformation in a cyano-substituted spironaphthoxazine,” Chem. Phys. Lett. 391(1-3), 33–37 (2004). [CrossRef]
  18. M. Suzuki, T. Asahi, and H. Masuhara, “Photochromic reactions of crystalline spiropyrans and spirooxazines induced by intense femtosecond laser excitation,” Phys. Chem. Chem. Phys. 4(2), 185–192 (2002). [CrossRef]
  19. M. Suzuki, T. Asahi, and H. Masuhara, “Cooperative photochemical reaction mechanism of femtosecond laser-induced photocoloration in spirooxazine microcrystals,” ChemPhysChem 6(11), 2396–2403 (2005). [CrossRef] [PubMed]
  20. G. Favaro, V. Malatesta, U. Mazzucato, G. Ottavi, and A. Romani, “Thermally reversible photoconversion of spiroindoline-naphthooxazines to photomerocyanines: a photochemical and kinetic study,” J. Photochem. Photobiol. Chem. 87(3), 235–241 (1995). [CrossRef]
  21. A. Chibisov and H. Görner, “Photoprocesses in spirooxazines and their merocyanines,” J. Phys. Chem. A 103(26), 5211–5216 (1999). [CrossRef]
  22. J. Buback, M. Kullmann, F. Langhojer, P. Nuernberger, R. Schmidt, F. Würthner, and T. Brixner, “Ultrafast bidirectional photoswitching of a spiropyran,” J. Am. Chem. Soc. 132(46), 16510–16519 (2010). [CrossRef] [PubMed]
  23. I. Gómez, M. Reguero, and M. A. Robb, “Efficient photochemical merocyanine-to-spiropyran ring closure mechanism through an extended conical intersection seam. A model CASSCF/CASPT2 study,” J. Phys. Chem. A 110(11), 3986–3991 (2006). [CrossRef] [PubMed]
  24. G. Cerullo and S. De Silvestri, “Optical parametric amplifiers,” Rev. Sci. Instrum. 74(1), 1–18 (2003). [CrossRef]
  25. D. Polli, D. Brida, S. Mukamel, G. Lanzani, and G. Cerullo, “Effective temporal resolution in pump-probe spectroscopy with strongly chirped pulses,” Phys. Rev. A 82(053809), 1–8 (2010).
  26. L. Lüer, C. Manzoni, G. Cerullo, G. Lanzani, and M. Meneghetti, “Ultrafast dynamics of a charge-transfer dimmer as a model for the photoinduced phase transition of charge-tranfer compounds,” Phys. Rev. Lett. 99(027401), 1–4 (2007).
  27. D. Polli, P. Altoè, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision,” Nature 467(7314), 440–443 (2010). [CrossRef] [PubMed]
  28. Q. Wang, R. W. Schoenlein, L. A. Peteanu, R. A. Mathies, and C. V. Shank, “Vibrationally coherent photochemistry in the femtosecond primary event of vision,” Science 266(5184), 422–424 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited