OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 3 — Jul. 1, 2011
  • pp: 434–450

Cryogenic Yb3+-doped materials for pulsed solid-state laser applications [Invited]

Darren Rand, Daniel Miller, Daniel J. Ripin, and Tso Yee Fan  »View Author Affiliations

Optical Materials Express, Vol. 1, Issue 3, pp. 434-450 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2191 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We review recent progress in pulsed lasers using cryogenically-cooled Yb3+-doped gain media, with an emphasis on high average power. Recent measurements of thermo-optic properties for various host materials at both room and cryogenic temperature are presented, including thermal conductivity, coefficient of thermal expansion and refractive index. Host materials reviewed include Y2O3, Lu2O3, Sc2O3, YLF, YSO, GSAG and YVO4. We report on the performance of several cryogenic Yb lasers operating at 5-kHz pulse repetition frequency (PRF). A Q-switched Yb:YAG laser is shown to operate at 114-W average power, with 16-ns pulse duration. A chirped pulse amplifier achieves 115-W output using a Yb:YAG power amplifier. Output power of 73 W is obtained from a composite Yb:YAG/Yb:GSAG amplifier, with pulses that compress to 1.6 ps. Finally, a high-average-power femtosecond laser based on Yb:YLF is discussed, with results for a 10-W regenerative amplifier at 10-kHZ PRF.

© 2011 OSA

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3538) Lasers and laser optics : Lasers, pulsed
(140.3615) Lasers and laser optics : Lasers, ytterbium

ToC Category:
Laser Materials

Original Manuscript: June 6, 2011
Revised Manuscript: June 21, 2011
Manuscript Accepted: June 23, 2011
Published: June 24, 2011

Virtual Issues
Advances in Optical Materials (2011) Optical Materials Express
(2011) Advances in Optics and Photonics

Darren Rand, Daniel Miller, Daniel J. Ripin, and Tso Yee Fan, "Cryogenic Yb3+-doped materials for pulsed solid-state laser applications [Invited]," Opt. Mater. Express 1, 434-450 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. P. Sorokin and M. J. Stevenson, “Stimulated infrared emission from trivalent uranium,” Phys. Rev. Lett. 5(12), 557–559 (1960). [CrossRef]
  2. D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005). [CrossRef]
  3. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007). [CrossRef]
  4. W. Leemans and E. Esarey, “Laser-driven plasma-wave electron accelerators,” Phys. Today 62(3), 44–49 (2009). [CrossRef]
  5. D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “165-W cryogenically cooled Yb:YAG laser,” Opt. Lett. 29(18), 2154–2156 (2004). [CrossRef] [PubMed]
  6. D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “300-W cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 41(10), 1274–1277 (2005). [CrossRef]
  7. D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, and J. W. Kuper, “Kilowatt class high-power cw Yb:YAG cryogenic laser,” Proc. SPIE 6552, 65520D-65520D-9 (2007). [CrossRef]
  8. H. Furuse, J. Kawanaka, N. Miyanaga, T. Saiki, K. Imasaki, M. Fujita, K. Takeshita, S. Ishii, and Y. Izawa, “Zig-zag active-mirror laser with cryogenic Yb3+:YAG/YAG composite ceramics,” Opt. Express 19(3), 2448–2455 (2011). [CrossRef] [PubMed]
  9. L. E. Zapata, D. J. Ripin, and T. Y. Fan, “Power scaling of cryogenic Yb:LiYF(4) lasers,” Opt. Lett. 35(11), 1854–1856 (2010). [CrossRef] [PubMed]
  10. S. Ricaud, D. N. Papadopoulos, P. Camy, J. L. Doualan, R. Moncorgé, A. Courjaud, E. Mottay, P. Georges, and F. Druon, “Highly efficient, high-power, broadly tunable, cryogenically cooled and diode-pumped Yb:CaF2.,” Opt. Lett. 35(22), 3757–3759 (2010). [CrossRef] [PubMed]
  11. P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, “Room-temperature diode-pumped Yb:YAG laser,” Opt. Lett. 16(14), 1089–1091 (1991). [CrossRef] [PubMed]
  12. S. Backus, R. Bartels, S. Thompson, R. Dollinger, H. C. Kapteyn, and M. M. Murnane, “High-efficiency, single-stage 7-kHz high-average-power ultrafast laser system,” Opt. Lett. 26(7), 465–467 (2001). [CrossRef] [PubMed]
  13. I. Matsushima, H. Yashiro, and T. Tomie, “10 kHz 40 W Ti:sapphire regenerative ring amplifier,” Opt. Lett. 31(13), 2066–2068 (2006). [CrossRef] [PubMed]
  14. R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12 (YAG), Lu3Al5O12 (LuAG), YAlO3 (YALO), LiYF4 (YLF), LiLuF4 (LuLF), BaY2F8 (BYF), KGd(WO4)2 (KGW), and KY(WO4)2 (KYW) laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98, 103514 (2005). [CrossRef]
  15. D. A. Rand, S. E. J. Shaw, J. R. Ochoa, D. J. Ripin, A. Taylor, T. Y. Fan, H. Martin, S. Hawes, J. Zhang, S. Sarkisyan, E. Wilson, and P. Lundquist, “Picosecond pulses from a cryogenically cooled, composite amplifier using Yb:YAG and Yb:GSAG,” Opt. Lett. 36(3), 340–342 (2011). [CrossRef] [PubMed]
  16. W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. Appl. Phys. 32(9), 1679–1684 (1961). [CrossRef]
  17. S. E. Smith and R. C. Campbell, “Flash diffusivity method: A survey of capabilities,” ElectronicsCoolings, May 2002. http://www.electronics-cooling.com/2002/05/flash-diffusivity-method-a-survey-of-capabilities/ .
  18. Annual Book of ASTM Standards, Vol. 14.02, “Thermal Measurements” (ASTM International, West Conshohocken, Penn.).
  19. E. G. Wolff and R. C. Savedra, “Precision interferometric dilatometer,” Rev. Sci. Instrum. 56(7), 1313 (1985). [CrossRef]
  20. V. Peters, A. Bolz, K. Petermann, and G. Huber, “Growth of high-melting sesquioxides by the heat exchanger method,” J. Cryst. Growth 237–239, 879–883 (2002). [CrossRef]
  21. T. Numazawa, O. Arai, Q. Hu, and T. Noda, “Thermal conductivity measurements for evaluation of crystal perfection at low temperatures,” Meas. Sci. Technol. 12(12), 2089–2094 (2001). [CrossRef]
  22. B. Comaskey, G. F. Albrecht, R. J. Beach, B. D. Moran, and R. W. Solarz, “Flash-lamp-pumped laser operation of Nd3+:Y2SiO5 at 1.074 µm,” Opt. Lett. 18(23), 2029–2031 (1993). [CrossRef] [PubMed]
  23. M. Jacquemet, C. Jacquemet, N. Janel, F. Druon, F. Balembois, P. Georges, J. Petit, B. Viana, D. Vivien, and B. Ferrand, “Efficient laser action of Yb:LSO and Yb:YSO oxyorthosilicates crystals under high-power diode-pumping,” Appl. Phys. B 80(2), 171–176 (2005). [CrossRef]
  24. P. A. Popov, N. N. Sirota, E. V. Zharikov, A. I. Zagumennyi, I. A. Ivonov, and G. B. Lutts, “Thermal conductivity of rare-earth scandium garnets and their solid solutions,” Laser Phys. 1, 437–440 (1991).
  25. J. D. James, J. A. Spittle, S. G. R. Brown, and R. W. Evans, “A review of measurement techniques for the thermal expansion coefficient of metals and alloys at elevated temperatures,” Meas. Sci. Technol. 12(3), R1–R15 (2001). [CrossRef]
  26. D. Taylor, “Thermal expansion data: III Sesquioxides, M2O3, with the corundum and the A-, B- and C-M2O3 structures,” Br. Ceram. Proc. , 83, 92–98 (1984).
  27. K. Scholle, P. Fuhrberg, T. Gün, Y. Kuzminykh, K. Petermann, and G. Huber, “Miniature lasers on the basis of Yb:Sc2O3,” ASSP’07, paper WB5 (2007
  28. Y. Sato and T. Taira, “Thermo-optical and -mechanical parameters of Nd:GdVO4 and Nd:YVO4,” CLEO’07, paper JWA87 (2007).
  29. E. C. Subbarao, D. K. Agrawal, H. A. McKinstry, C. W. Sallese, and R. Roy, “Thermal expansion of compounds of zircon structure,” J. Am. Ceram. Soc. 73(5), 1246–1252 (1990). [CrossRef]
  30. H. M. O’Bryan, P. K. Gallagher, and G. W. Berkstresser, “Thermal expansion of Y2SiO5 single crystals,” J. Am. Ceram. Soc. 71, C42–C43 (1988).
  31. J. W. Nowok, J. P. Kay, and R. J. Kulas, “Thermal expansion and high-temperature phase transformation of the yttrium silicate Y2SiO5,” J. Mater. Res. 16(08), 2251–2255 (2001). [CrossRef]
  32. C. S. Hoefer, K. W. Kirby, and L. G. DeShazert, “Thermo-optic properties of gadolinium garnet laser crystals,” J. Opt. Soc. Am. B 5(11), 2327–2332 (1988). [CrossRef]
  33. D. S. Sumida and D. A. Rockwell, “Thermo-optic measurements of chromium- and neodymium-doped scandium garnet laser rods,” in Conference on Lasers and Electro-Optics, vol. 12 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1992), pp. 274–275.
  34. D. E. Zelmon, J. J. Lee, K. M. Currin, J. M. Northridge, and D. Perlov, “Revisiting the optical properties of Nd doped yttrium orthovanadate,” Appl. Opt. 49(4), 644–647 (2010). [CrossRef] [PubMed]
  35. H. S. Shi, G. Zhang, and H. Y. Shen, “Measurement of principal refractive indices and the thermal refractive index coefficients of yttrium vanadate,” J. Synth. Cryst. 30, 85–88 (2001).
  36. P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermo-optic coefficients of Nd-doped anisotropic KGd(WO4)2, YVO4 and GdVO4 laser crystals,” Appl. Phys. B 102(1), 117–122 (2011). [CrossRef]
  37. J. Dong, M. Bass, Y. Mao, P. Deng, and F. Gan, “Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet,” J. Opt. Soc. Am. B 20(9), 1975–1979 (2003). [CrossRef]
  38. S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Efficient high-average-power operation of Q-switched cryogenic Yb:YAG laser oscillator,” Jpn. J. Appl. Phys. 44(50), L1529–L1531 (2005). [CrossRef]
  39. J.-P. M. Feve, K. E. Shortoff, M. J. Bohn, and J. K. Brasseur, “High average power diamond Raman laser,” Opt. Express 19(2), 913–922 (2011). [CrossRef] [PubMed]
  40. J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically-cooled Yb:YAG laser,” Laser Phys. 20(5), 1079–1084 (2010). [CrossRef]
  41. J. G. Manni, J. D. Hybl, D. Rand, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “100-W Q-switched cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 46(1), 95–98 (2010). [CrossRef]
  42. J. Kawanaka, K. Yamakawa, H. Nishioka, and K.-I. Ueda, “30-mJ, diode-pumped, chirped-pulse Yb:YLF regenerative amplifier,” Opt. Lett. 28(21), 2121–2123 (2003). [CrossRef] [PubMed]
  43. S. Tokita, J. Kawanaka, Y. Izawa, M. Fujita, and T. Kawashima, “23.7-W picosecond cryogenic-Yb:YAG multipass amplifier,” Opt. Express 15(7), 3955–3961 (2007). [CrossRef] [PubMed]
  44. Y. Akahane, M. Aoyama, K. Ogawa, K. Tsuji, S. Tokita, J. Kawanaka, H. Nishioka, and K. Yamakawa, “High-energy, diode-pumped, picosecond Yb:YAG chirped-pulse regenerative amplifier for pumping optical parametric chirped-pulse amplification,” Opt. Lett. 32(13), 1899–1901 (2007). [CrossRef] [PubMed]
  45. K. Ogawa, Y. Akahane, M. Aoyama, K. Tsuji, S. Tokita, J. Kawanaka, H. Nishioka, and K. Yamakawa, “Multi-millijoule, diode-pumped, cryogenically-cooled Yb:KY(WO(4))(2) chirped-pulse regenerative amplifier,” Opt. Express 15(14), 8598–8602 (2007). [CrossRef] [PubMed]
  46. K.-H. Hong, A. Siddiqui, J. Moses, J. Gopinath, J. Hybl, F. Ö. Ilday, T. Y. Fan, and F. X. Kärtner, “Generation of 287 W, 5.5 ps pulses at 78 MHz repetition rate from a cryogenically cooled Yb:YAG amplifier seeded by a fiber chirped-pulse amplification system,” Opt. Lett. 33(21), 2473–2475 (2008). [CrossRef] [PubMed]
  47. D. C. Brown, J. M. Singley, K. Kowalewski, J. Guelzow, and V. Vitali, “High sustained average power cw and ultrafast Yb:YAG near-diffraction-limited cryogenic solid-state laser,” Opt. Express 18(24), 24770–24792 (2010). [CrossRef] [PubMed]
  48. A. Pugžlys, G. Andriukaitis, A. Baltuška, L. Su, J. Xu, H. Li, R. Li, W. J. Lai, P. B. Phua, A. Marcinkevičius, M. E. Fermann, L. Giniūnas, R. Danielius, and S. Ališauskas, “Multi-mJ, 200-fs, cw-pumped, cryogenically cooled, Yb,Na:CaF2 amplifier,” Opt. Lett. 34(13), 2075–2077 (2009). [CrossRef] [PubMed]
  49. F. J. Furch, B. A. Reagan, B. M. Luther, A. H. Curtis, S. P. Meehan, and J. J. Rocca, “Demonstration of an all-diode-pumped soft x-ray laser,” Opt. Lett. 34(21), 3352–3354 (2009). [CrossRef] [PubMed]
  50. K.-H. Hong, J. T. Gopinath, D. Rand, A. M. Siddiqui, S.-W. Huang, E. Li, B. J. Eggleton, J. D. Hybl, T. Y. Fan, and F. X. Kärtner, “High-energy, kHz-repetition-rate, ps cryogenic Yb:YAG chirped-pulse amplifier,” Opt. Lett. 35(11), 1752–1754 (2010). [CrossRef] [PubMed]
  51. J. Tümmler, R. Jung, H. Stiel, P. V. Nickles, and W. Sandner, “High-repetition-rate chirped-pulse-amplification thin-disk laser system with joule-level pulse energy,” Opt. Lett. 34(9), 1378–1380 (2009). [CrossRef] [PubMed]
  52. T. Metzger, A. Schwarz, C. Y. Teisset, D. Sutter, A. Killi, R. Kienberger, and F. Krausz, “High-repetition-rate picosecond pump laser based on a Yb:YAG disk amplifier for optical parametric amplification,” Opt. Lett. 34(14), 2123–2125 (2009). [CrossRef] [PubMed]
  53. P. Russbueldt, T. Mans, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier,” Opt. Lett. 35(24), 4169–4171 (2010). [CrossRef] [PubMed]
  54. S. Klingebiel, C. Wandt, C. Skrobol, I. Ahmad, S. A. Trushin, Z. Major, F. Krausz, and S. Karsch, “High energy picosecond Yb:YAG CPA system at 10 Hz repetition rate for pumping optical parametric amplifiers,” Opt. Express 19(6), 5357–5363 (2011). [CrossRef] [PubMed]
  55. F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tünnermann, “Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 32(24), 3495–3497 (2007). [CrossRef] [PubMed]
  56. T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35(2), 94–96 (2010). [CrossRef] [PubMed]
  57. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985). [CrossRef]
  58. S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69(3), 1207–1223 (1998). [CrossRef]
  59. J. Sherman, “Thermal compensation of a cw-pumped Nd:YAG laser,” Appl. Opt. 37(33), 7789–7796 (1998). [CrossRef] [PubMed]
  60. Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd: YAG rods,” Opt. Quantum Electron. 28, 57–69 (1996). [CrossRef]
  61. N. Coluccelli, G. Galzerano, L. Bonelli, A. Di Lieto, M. Tonelli, and P. Laporta, “Diode-pumped passively mode-locked Yb:YLF laser,” Opt. Express 16(5), 2922–2927 (2008). [CrossRef] [PubMed]
  62. K. Ogawa, Y. Akahane, and K. Yamakawa, “100-mJ diode-pumped, cryogenically-cooled Yb:YLF chirped-pulse regenerative amplifier,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CMB4.
  63. T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009). [CrossRef]
  64. D. J. Ripin, T. Y. Fan, A. K. Goyal, and J. Hybl, “Grazing-incidence-disk laser element,” U.S. Patent 2010/0215067 A1 (issued Aug. 26, 2010).
  65. C. P. J. Barty, T. Guo, C. Le Blanc, F. Raksi, C. Rose-Petruck, J. Squier, K. R. Wilson, V. V. Yakovlev, and K. Yamakawa, “Generation of 18-fs, multiterawatt pulses by regenerative pulse shaping and chirped-pulse amplification,” Opt. Lett. 21(9), 668–670 (1996). [CrossRef] [PubMed]
  66. F. Verluise, V. Laude, Z. Cheng, Ch. Spielmann, and P. Tournois, “Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping,” Opt. Lett. 25(8), 575–577 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited