OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 4 — Aug. 1, 2011
  • pp: 535–542

Origin and tuning of surface optic and long wavelength phonons in biomimetic GaAs nanotip arrays

Yi-Fan Huang, Surojit Chattopadhyay, Hsu-Cheng Hsu, Chien-Ting Wu, Kuei- Hsien Chen, and Li-Chyong Chen  »View Author Affiliations


Optical Materials Express, Vol. 1, Issue 4, pp. 535-542 (2011)
http://dx.doi.org/10.1364/OME.1.000535


View Full Text Article

Enhanced HTML    Acrobat PDF (1124 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Nano-texturization provides sensitive routes for selection of preferred phonon modes. Biomimetic gallium arsenide (GaAs) nano-tips, with a pencil-like structure, prepared by an electron cyclotron resonance plasma etching of planar GaAs wafer demonstrates tunable strength of the surface optic (SO), and long wavelength transverse optic and longitudinal optic phonon modes. These modes can be tuned as a function of the length (L) of the nano-tips enabling phonon engineering. Invalidation of symmetry rules due to nano-texturization results in the excitation of a SO mode that can also be tuned, in strength and position, with L. Red shift of this mode with a change in the dielectric constant of the medium (air to aniline) confirms the SO nature. The theoretically estimated length scales indicate that the diameter modulated apexes of the nano-tips, whose length (L’) increases consistently with L, could be responsible in transferring the required momentum to the SO phonons.

© 2011 OSA

OCIS Codes
(190.5650) Nonlinear optics : Raman effect
(300.6470) Spectroscopy : Spectroscopy, semiconductors
(160.4236) Materials : Nanomaterials

ToC Category:
Semiconductors

History
Original Manuscript: June 9, 2011
Revised Manuscript: June 28, 2011
Manuscript Accepted: June 28, 2011
Published: July 6, 2011

Citation
Yi-Fan Huang, Surojit Chattopadhyay, Hsu-Cheng Hsu, Chien-Ting Wu, Kuei- Hsien Chen, and Li-Chyong Chen, "Origin and tuning of surface optic and long wavelength phonons in biomimetic GaAs nanotip arrays," Opt. Mater. Express 1, 535-542 (2011)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-4-535


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. D. Krauss, F. W. Wise, and D. B. Tanner, “Observation of coupled vibrational modes of a semiconductor nanocrystal,” Phys. Rev. Lett. 76(8), 1376–1379 (1996). [CrossRef] [PubMed]
  2. E. Roca, C. Trallero-Giner, and M. Cardona, “Polar optical vibrational modes in quantum dots,” Phys. Rev. B Condens. Matter 49(19), 13704–13711 (1994). [CrossRef] [PubMed]
  3. R. Ruppin and R. Englman, “Optical phonons of small crystals,” Rep. Prog. Phys. 33(1), 149–196 (1970). [CrossRef]
  4. H. Richter, Z. P. Wang, and L. Ley, “The one phonon Raman spectrum in microcrystalline silicon,” Solid State Commun. 39(5), 625–629 (1981). [CrossRef]
  5. R. Gupta, Q. Xiong, G. D. Mahan, and P. C. Eklund, “Surface optical phonons in gallium phosphide nano-wires,” Nano Lett. 3(12), 1745–1750 (2003). [CrossRef]
  6. I. M. Tiginyanu, G. Irmer, J. Monecke, and H. L. Hartnagel, “Micro-Raman-scattering study of surface-related phonon modes in porous GaP,” Phys. Rev. B 55(11), 6739–6742 (1997). [CrossRef]
  7. I. M. Tiginyanu, V. V. Ursaki, V. A. Karavanskii, V. N. Sokolov, Y. S. Raptis, and E. Anastassakis, “Surface-related phonon mode in porous GaP,” Solid State Commun. 97(8), 675–678 (1996). [CrossRef]
  8. A. Sarua, J. Monecke, G. Irmer, I. M. Tiginyanu, G. Gärtner, and H. L. Hartnagel, “Fröhlich modes in porous III–V semiconductors,” J. Phys. Condens. Matter 13(31), 6687–6706 (2001). [CrossRef]
  9. I. M. Tiginyanu, A. Sarua, G. Irmer, J. Monecke, S. M. Hubbard, D. Pavlidis, and V. Valiaev, “Fröhlich modes in GaN columnar nanostructures,” Phys. Rev. B 64(23), 233317 (2001). [CrossRef]
  10. K. W. Adu, Q. Xiong, H. R. Gutierrez, G. Chen, and P. C. Eklund, “Raman scattering as a probe of phonon confinement and surface optical modes in semiconducting nano-wires,” Appl. Phys., A Mater. Sci. Process. 85(3), 287–297 (2006). [CrossRef]
  11. G. D. Mahan, R. Gupta, Q. Xiong, C. K. Adu, and P. C. Eklund, “Optical phonons in polar semiconductor nano-wires,” Phys. Rev. B 68(7), 073402 (2003). [CrossRef]
  12. A. G. Cullis, L. T. Canham, and P. D. J. Calcott, “The structural and luminescence properties of porous silicon,” J. Appl. Phys. 82(3), 909–965 (1997). [CrossRef]
  13. Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007). [CrossRef] [PubMed]
  14. F. J. P. Schuurmans, D. Vanmaekelbergh, and A. Lagendijk, “Strongly photonic macroporous gallium phosphide networks,” Science 284(5411), 141–143 (1999). [CrossRef] [PubMed]
  15. M. A. Stroscio and M. Dutta, Phonons in Nanostructures (Cambridge University Press, 2001).
  16. C. H. Hsu, H. C. Lo, C. F. Chen, C. T. Wu, J. S. Hwang, D. Das, J. Tsai, K. H. Chen, and L. C. Chen, “Generally applicable self-masked dry etching technique for nanotip array fabrication,” Nano Lett. 4(3), 471–475 (2004). [CrossRef]
  17. C. H. Hsu, Y. F. Huang, L. C. Chen, S. Chattopadhyay, K. H. Chen, H. C. Lo, and C. F. Chen, “Morphology control of silicon nano-tips fabricated by electron cyclotron resonance plasma etching,” J. Vac. Sci. Technol. B 24(1), 308–311 (2006). [CrossRef]
  18. S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, “Antireflecting and photonic nanostructures,” Mater. Sci. Eng. Rep. 69(1-3), 1–35 (2010). [CrossRef]
  19. T. F. Kuech and L. J. Mawst, “Nanofabrication of III-V semiconductors employing diblock copolymer lithography,” J. Phys. D Appl. Phys. 43(18), 183001 (2010). [CrossRef]
  20. G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett. 6(1), 342 (2011). [CrossRef] [PubMed]
  21. M. Watt, C. M. S. Torres, H. E. G. Arnot, and S. P. Beaumont, “Surface phonons in GaAs cylinders,” Semicond. Sci. Technol. 5(4), 285–290 (1990). [CrossRef]
  22. S. W. Silva, J. C. Galzerani, D. I. Lubyshev, and P. Basmaji, “Surface phonon observed in GaAs wire crystals grown on porous Si,” J. Phys. Condens. Matter 10(43), 9687–9690 (1998). [CrossRef]
  23. D. A. G. Bruggeman, “Berechnung Verschiedener Physikalischer Konstanten von Heterogenen Substanzen, I. Dielektrizitatskonstanten und Leitfahigkeiten der Mischkorper aus Isotropen Substanzen,” Ann. Phys. 416(7), 636–664 (1935). [CrossRef]
  24. B. Jusserand and J. Sapriel, “Raman investigation of anharmonicity and disorder-induced effects in Ga1-xAlxAs epitaxial layers,” Phys. Rev. B 24(12), 7194–7205 (1981). [CrossRef]
  25. S. Hayashi and H. Kanamori, “Raman scattering from the surface phonon mode in GaP microcrystals,” Phys. Rev. B 26(12), 7079–7082 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited