OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 4 — Aug. 1, 2011
  • pp: 614–624

Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy [Invited]

Joachim Fischer and Martin Wegener  »View Author Affiliations


Optical Materials Express, Vol. 1, Issue 4, pp. 614-624 (2011)
http://dx.doi.org/10.1364/OME.1.000614


View Full Text Article

Acrobat PDF (2385 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Three-dimensional direct laser writing has become a well established, versatile, widespread, and even readily commercially available “workhorse” of nano- and micro-technology. However, its lateral and axial spatial resolution is inherently governed by Abbe’s diffraction limitation – analogous to optical microscopy. In microscopy, stimulated-emission-depletion approaches have lately circumvented Abbe’s barrier and lateral resolutions down to 5.6 nm using visible light have been achieved. In this paper, after very briefly reviewing our previous efforts with respect to translating this success in optical microscopy to optical lithography, we present our latest results regarding resolution improvement in the lateral as well as in the much more relevant axial direction. The structures presented in this paper set a new resolution-benchmark for next-generation direct-laser-writing optical lithography. In particular, we break the lateral and the axial Abbe criterion for the first time.

© 2011 OSA

OCIS Codes
(350.3390) Other areas of optics : Laser materials processing
(350.3450) Other areas of optics : Laser-induced chemistry
(160.1245) Materials : Artificially engineered materials
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Artificially Engineered Structures

History
Original Manuscript: May 27, 2011
Manuscript Accepted: June 29, 2011
Published: August 1, 2011

Virtual Issues
Femtosecond Direct Laser Writing and Structuring of Materials (2011) Optical Materials Express

Citation
Joachim Fischer and Martin Wegener, "Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy [Invited]," Opt. Mater. Express 1, 614-624 (2011)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-4-614


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. H.-B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett. 74, 786–788 (1999). [CrossRef]
  2. S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412, 697–698 (2001). [CrossRef] [PubMed]
  3. M. Straub and M. Gu, “Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization,” Opt. Lett. 27, 1824–1826 (2002). [CrossRef]
  4. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct Laser Writing of Three-Dimensional Photonic Crystal Templates for Telecommunications,” Nature Mater. 3, 444–447 (2004). [CrossRef]
  5. G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20, 1038–1052 (2010). [CrossRef]
  6. A. Ledermann, L. Cademartiri, M. Hermatschweiler, C. Toninelli, G.A. Ozin, D.S. Wiersma, M. Wegener, and G. von Freymann, “Three-dimensional silicon inverse photonic quasicrystals for infrared wavelengths,” Nature Mater. 5, 942–945 (2036).
  7. A. Ledermann, M. Wegener, and G. von Freymann, “Rhombicuboctahedral three-dimensional photonic quasicrystals,” Adv. Mater. 22, 2363–2366 (2010). [CrossRef] [PubMed]
  8. I. Staude, G. von Freymann, S. Essig, K. Busch, and M. Wegener, “Waveguides in three-dimensional photonic-band-gap materials by direct laser writing and silicon double inversion,” Opt. Lett. 36, 67–69 (2010). [CrossRef]
  9. J.K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009). [CrossRef] [PubMed]
  10. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-Dimensional Invisibility Cloak at Optical Wavelengths,” Science 328, 337–339 (2010). [CrossRef] [PubMed]
  11. F. Klein, T. Striebel, J. Fischer, Z. Jiang, C. M. Franz, G. von Freymann, M. Wegener, and M. Bastmeyer, “Elastic Fully Three-dimensional Microstructure Scaffolds for Cell Force Measurements,” Adv. Mater. 22, 868–871 (2010). [CrossRef] [PubMed]
  12. F. Klein, B. Richter, T. Striebel, C.M. Franz, G. von Freymann, M. Wegener, and M. Bastmeyer, “Two-component Polymer Scaffolds for Controlled Three-dimensional Cell Culture,” Adv. Mater. 23, 1341–1345 (2011). [CrossRef] [PubMed]
  13. http://www.nanoscribe.de
  14. H. B. Sun, K. Takada, M. S. Kim, K. S. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83, 1104 (2003). [CrossRef]
  15. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994). [CrossRef] [PubMed]
  16. T.A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. 97, 8206–8210 (2000). [CrossRef] [PubMed]
  17. V. Westphal and S. W. Hell, “Nanoscale Resolution in the Focal Plane of an Optical Microscope,” Phys. Rev. Lett. 94, 143903 (2005). [CrossRef] [PubMed]
  18. S. W. Hell, “Far-Field Optical Nanoscopy,” Science 316, 1153–1158 (2007). [CrossRef] [PubMed]
  19. S. W. Hell, “Microscopy and its focal switch,” Nature Methods 6, 24–32 (2009). [CrossRef] [PubMed]
  20. S. W. Hell, R. Schmidt, and A. Egner, “Diffraction-unlimited three-dimensional optical nanoscopy with opposing lenses,” Nature Photon. 3, 381–387 (2009). [CrossRef]
  21. K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440, 935–939 (2006). [CrossRef] [PubMed]
  22. E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nature Photon. 3, 144–147 (2009). [CrossRef]
  23. T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-Color Single-Photon Initiation and Photoinhibition for Subdiffraction Photolithography,” Science 324, 913–917 (2009). [CrossRef] [PubMed]
  24. L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 Resolution by One-Color Initiation and Deactivation of Polymerization,” Science 324, 910–913 (2009). [CrossRef] [PubMed]
  25. J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laser-writing optical lithography,” Adv. Mater. 22, 3578–3582 (2010). [CrossRef] [PubMed]
  26. J. Fischer, T. Ergin, and M. Wegener, “Three-dimensional polarization-independent visible-frequency carpet invisibility cloak,” Opt. Lett. 36, 2059–2061 (2011). [CrossRef] [PubMed]
  27. T. Wolf, J. Fischer, M. Wegener, and A.-N. Unterreiner, “Pump-probe spectroscopy on photoinitiators for stimulated-emission-depletion optical lithography,” submitted (2011).
  28. K.-M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: New layer-by-layer periodic structures,” Solid State Comm. 89, 413–416 (1994). [CrossRef]
  29. M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Angle-resolved transmission spectroscopy of three-dimensional Photonic Crystals fabricated by direct laser writing,” Appl. Phys. Lett. 87, 221104 (2005). [CrossRef]
  30. I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch, G. von Freymann, and M. Wegener, “Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths,” Opt. Lett. 35, 1094–1096 (2010). [CrossRef] [PubMed]
  31. W. Haske, V. W. Chen, J. M. Hales, W. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express 15, 3426–3436 (2007). [CrossRef] [PubMed]
  32. M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett. 97, 221102 (2010). [CrossRef]
  33. G. Subramania, Y.-J. Lee, A. J. Fischer, and D. D. Koleske, “Log-Pile TiO2 Photonic Crystal for Light Control at Near-UV and Visible Wavelengths,” Adv. Mater. 22, 487–491 (2010). [CrossRef] [PubMed]
  34. S. H. Park, T. W. Lim, D. Yang, R. H. Kim, and K. Lee, “Improvement of spatial resolution in nanostereolithography using radical quencher,” Macromol. Res. 14, 559–564 (2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited