OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 4 — Aug. 1, 2011
  • pp: 633–642

Ultrashort pulse inscription of tailored fiber Bragg gratings with a phase mask and a deformed wavefront [Invited]

Christian Voigtländer, Ria G. Becker, Jens Thomas, Daniel Richter, Anshuman Singh, Andreas Tünnermann, and Stefan Nolte  »View Author Affiliations


Optical Materials Express, Vol. 1, Issue 4, pp. 633-642 (2011)
http://dx.doi.org/10.1364/OME.1.000633


View Full Text Article

Enhanced HTML    Acrobat PDF (2138 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the inscription of chirped fiber Bragg Gratings (FBGs) with a phase mask and a deformed wavefront using a femtosecond laser. A qualitative model is developed to predict the behavior of the resulting grating period for a deformed wavefront. In addition the quantitative change of the period was simulated based on a ray optical solution of the diffraction behind the phase mask. For deforming the wavefront experimentally a cylindrical tuning lens was used. Tilting of the lens increased the higher order aberrations like coma and spherical aberration, which leads to chirped FBGs. A chirped FBG with a FWHM bandwidth of 2.5 nm could be realized. The change of the resulting fiber Bragg grating period was measured using a side diffraction setup yielding good agreement with the measured spectra.

© 2011 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(060.2340) Fiber optics and optical communications : Fiber optics components
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Artificially Engineered Structures

History
Original Manuscript: June 15, 2011
Manuscript Accepted: June 30, 2011
Published: July 13, 2011

Virtual Issues
Femtosecond Direct Laser Writing and Structuring of Materials (2011) Optical Materials Express

Citation
Christian Voigtländer, Ria G. Becker, Jens Thomas, Daniel Richter, Anshuman Singh, Andreas Tünnermann, and Stefan Nolte, "Ultrashort pulse inscription of tailored fiber Bragg gratings with a phase mask and a deformed wavefront [Invited]," Opt. Mater. Express 1, 633-642 (2011)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-4-633


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008). [CrossRef]
  2. S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Ultrafast laser processing: new options for three-dimensional photonic structures,” J. Mod. Opt. 51, 2533–2542 (2005). [CrossRef]
  3. A. Szameit, T. Pertsch, F. Dreisow, S. Nolte, A. Tünnermann, U. Peschel, and F. Lederer, “Light evolution in arbitrary two-dimensional waveguide arrays,” Phys. Rev. A 75, 053814 (2007). [CrossRef]
  4. M. Ams, G. Marshall, P. Dekker, and J. Piper, “Ultrafast laser written active devices,” Laser Photonics Rev. 3, 535–544 (2008). [CrossRef]
  5. E. Wikszak, J. Thomas, J. Burghoff, B. Ortac, J. Limpert, S. Nolte, U. Fuchs, and A. Tünnermann, “Erbium fiber laser based on intracore femtosecond-written fiber Bragg grating,” Opt. Lett. 31, 2390–2392 (2006). [CrossRef]
  6. Y. Lai, A. Martinez, I. Khrushchev, and I. Bennion, “Distributed Bragg reflector fiber laser fabricated by femtosecond laser inscription,” Opt. Lett. 31, 1672–1674 (2006). [CrossRef]
  7. N. Jovanovic, M. Åslund, A. Fuerbach, S. D. Jackson, G. D. Marshall, and M. J. Withford, “Narrow linewidth, 100 W cw Yb-doped silica fiber laser with a point-by-point Bragg grating inscribed directly into the active core,” Opt. Lett. 32, 2804–2806 (2007). [CrossRef]
  8. F. Stutzki, C. Jauregui, C. Voigtländer, J. U. Thomas, J. Limpert, S. Nolte, and A. Tünnermann, “Passively stabilized 215-W monolithic cw LMA-fiber laser with innovative transversal mode filter,” Proc. SPIE 7580, 75801K (2010).
  9. G. Marshall, R. Williams, N. Jovanovic, M. J. Steel, and M. J. Withford, “Point-by-point written fiber-Bragg gratings and their application in complex grating designs,” Opt. Express 18, 19844–19859 (2010). [CrossRef]
  10. S. J. Mihailov, C.W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg gratings written in all-SiO2 and ge-doped core fibers with 800-nm femtosecond radiation and a phase mask,” J. Lightwave Technol. 22, 94–100 (2004). [CrossRef]
  11. J. U. Thomas, N. Jovanovic, R. G. Becker, G. D. Marshall, M. J. Withford, A. Tünnermann, S. Nolte, and M. J. Steel, “Cladding mode coupling in highly localized fiber Bragg gratings: modal properties and transmission spectra,” Opt. Express 19, 325–341 (2011). [CrossRef]
  12. D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond ir laser and a phase mask,” IEEE Photon. Technol. Lett. 16, 1864–1866 (2004). [CrossRef]
  13. J. U. Thomas, C. Voigtländer, S. Nolte, A. Tünnermann, N. Jovanovic, G. D. Marshall, M. J. Withford, and M. Steel, “Mode selective fiber Bragg gratings,” Proc. SPIE 7589, 75890J (2010).
  14. A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, and I. Bennion, “All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings,” Appl. Phys. Lett. 66, 1053–1055 (1995). [CrossRef]
  15. R. Kashyap, Fiber Bragg Gratings (Academics Press, 1999).
  16. M. Bernier, Y. Sheng, and R. Vallée, “Ultrabroadband fiber Bragg gratings written with a highly chirped phase mask and infrared femtosecond pulses,” Opt. Express 17, 3285–3290 (2009). [CrossRef]
  17. J. U. Thomas, C. Voigtländer, D. Schimpf, F. Stutzki, E. Wikszak, J. Limpert, S. Nolte, and A. Tünnermann, “Continuously chirped fiber Bragg gratings by femtosecond laser structuring,” Opt. Lett. 33, 1560–1562 (2008). [CrossRef]
  18. C. Voigtländer, J. U. Thomas, E. Wikszak, P. Dannberg, S. Nolte, and A. Tünnermann, “Chirped fiber Bragg gratings written with ultrashort pulses and a tunable phase mask,” Opt. Lett. 34, 1888–1890 (2009). [CrossRef]
  19. J. D. Prohaska, E. Snitzer, S. Rishton, and V. Boegli, “Magnification of mask fabricated fibre Bragg gratings,” Electron. Lett. 29, 1614–1615 (1993). [CrossRef]
  20. J. D. Mills, C. W. J. Hillman, B. H. Blott, and W. S. Brocklesby, “Imaging of free-space interference patterns used to manufacture fiber Bragg gratings,” Appl. Opt. 39, 6128–6135 (2000). [CrossRef]
  21. C. W. Smelser, D. Grobnic, and S. J. Mihailov, “Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask,” Opt. Lett. 29, 1730–1732 (2004). [CrossRef]
  22. J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys. A: Mater. Sci. Process. 86, 153–157 (2007).
  23. D. Park and M. Kim, “Simple analysis of the energy density distribution of the diffracted ultraviolet beam from a fiber Bragg grating phase mask,” Opt. Lett. 29, 1849–1851 (2004). [CrossRef]
  24. V. N. Mahajan, “Zernike circle polynomials and optical aberrations of systems with circular pupils,” Appl. Opt. 33, 8125–8127 (1994). [CrossRef]
  25. F. El-Diasty, A. Heaney, and T. Erdogan, “Analysis of fiber Bragg gratings by a side-diffraction interference technique,” Appl. Opt. 40, 890–896 (2001). [CrossRef]
  26. G. D. Love, “Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator,” Appl. Opt. 36, 1517–1520 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited