OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 4 — Aug. 1, 2011
  • pp: 652–657

Laser fabrication of semiconducting ferroelectric single crystal SbSI features on chalcohalide glass

Pradyumna Gupta, Adam Stone, Nathaniel Woodward, Volkmar Dierolf, and Himanshu Jain  »View Author Affiliations


Optical Materials Express, Vol. 1, Issue 4, pp. 652-657 (2011)
http://dx.doi.org/10.1364/OME.1.000652


View Full Text Article

Enhanced HTML    Acrobat PDF (992 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper demonstrates a laser direct-write method to form single crystal semiconductor ferroelectric SbSI features on chalcogenide glasses for integration into infrared devices. The method overcomes a major limitation of thin-film deposition techniques, viz. the uncontrolled stoichiometry of SbSI due to very different vapor pressure of its constituents. It promises advantages of selective single-crystal formation and control on the morphology of the crystal. Mechanism of and control parameters for laser crystallization are explored.

© 2011 OSA

OCIS Codes
(130.3130) Integrated optics : Integrated optics materials
(130.5990) Integrated optics : Semiconductors
(140.3390) Lasers and laser optics : Laser materials processing
(160.1890) Materials : Detector materials
(160.2750) Materials : Glass and other amorphous materials
(130.2260) Integrated optics : Ferroelectrics

ToC Category:
Semiconductors

History
Original Manuscript: May 16, 2011
Revised Manuscript: July 14, 2011
Manuscript Accepted: July 17, 2011
Published: July 20, 2011

Citation
Pradyumna Gupta, Adam Stone, Nathaniel Woodward, Volkmar Dierolf, and Himanshu Jain, "Laser fabrication of semiconducting ferroelectric single crystal SbSI features on chalcohalide glass," Opt. Mater. Express 1, 652-657 (2011)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-4-652


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. I. Gerzanich, V. A. Lyakhovitskaya, V. M. Fridkin, and B. A. Popovkin, in Current Topics in Materials Science, E. Kaldis, ed. (North-Holland, Amsterdam 10, 55–190, (1982)).
  2. L. E. Cross, A. S. Bhalla, F. Ainger, and D. Damjanovic, “Pyro-optic detector and imager,” U. S. Patent 4994672, Feb. 19, 1991.
  3. M. Nowak, P. Szperlich, A. Kidawa, M. Kepinska, P. Gorczycki, and B. Kauch, “Optical and photoelectrical properties of SbSI,” Proc. SPIE 5136, 172–177 (2003). [CrossRef]
  4. S. Surthi, S. Kotru, and R. K. Pandey, “SbSI films for ferroelectric memory applications,” Integr. Ferroelectr. 48(1), 263–269 (2002). [CrossRef]
  5. M. Nowak, P. Mroczek, P. Duka, A. Kidawa, P. Szperlich, A. Grabowski, J. Szala, and G. Moskal, “Using of textured polycrystalline SbSI in actuators’,” Sens. Actuators A Phys. 150(2), 251–256 (2009). [CrossRef]
  6. A. Mansingh and T. Sudersena Rao, “Growth and characterization of flash-evaporated sulphoiodide thin films,” J. Appl. Phys. 58(9), 3530–3535 (1985). [CrossRef]
  7. P. K. Ghosh, A. S. Bhalla, and L. E. Cross, “Preparation and electrical properties of thin films of antimony sulphur iodide (SbSI),” Ferroelectrics 51(1), 29–33 (1983). [CrossRef]
  8. S. Surthi, S. Kotru, and R. K. Pandey, “Preparation and electrical properties of ferroelectric SbSI films by pulsed laser deposition,” J. Mater. Sci. Lett. 22(8), 591–593 (2003). [CrossRef]
  9. K. Nassau, J. W. Shiever, and M. Kowalchik, “The growth of large SbSI crystals: control of needle morphology,” J. Cryst. Growth 7(2), 237–245 (1970). [CrossRef]
  10. P. Muralt, “Micromachined infrared detectors based on pyroelectric thin films,” Rep. Prog. Phys. 64(10), 1339–1388 (2001). [CrossRef]
  11. T. Honma, “Laser-induced crystal growth of nonlinear optical crystal on glass surface,” J. Ceram. Soc. Jpn. 118(1374), 71–76 (2010). [CrossRef]
  12. T. Honma and T. Komatsu, “Patterning of two-dimensional planar lithium niobate architectures on glass surface by laser scanning,” Opt. Express 18(8), 8019–8024 (2010). [CrossRef] [PubMed]
  13. P. Gupta, H. Jain, D. B. Williams, T. Honma, Y. Benino, and T. Komatsu, “Creation of ferroelectric, single-crystal architecture in Sm0.5La0.5BGeO5 glass,” J. Am. Ceram. Soc. 91(1), 110–114 (2008). [CrossRef]
  14. A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Directionally controlled 3D ferroelectric single crystal growth in LaBGeO5 glass by femtosecond laser irradiation,” Opt. Express 17(25), 23284–23289 (2009). [CrossRef] [PubMed]
  15. P. Gupta, H. Jain, D. B. Williams, J. Toulouse, and I. Veltchev, “Creation of tailored features by laser heating of Nd0.2La0.8BGeO5 glass,” Opt. Mater. 29(4), 355–359 (2006). [CrossRef]
  16. L. Ding, D. Zhao, H. Jain, Y. Xu, S. Wang, and G. Chen, “Structure of GeS2-SbSI glasses by Raman spectroscopy,” J. Am. Ceram. Soc. 93(10), 2932–2934 (2010). [CrossRef]
  17. V. M. Rubish, M. Y. Rigan, S. M. Gasinets, O. V. Gorina, D. I. Kaynts, and V. V. Tovt, “Obtaining and crystallization pecularities of antimony containing chalcohalogenide glasses,” Ferroelectrics 372(1), 87–92 (2008). [CrossRef]
  18. V. M. Rubish, “Thermostimulated relaxation of SbSI glass structure,” J. Optoelectron. Adv. Mater. 3(4), 941–944 (2001).
  19. V. M. Rubish, M. Y. Rigan, S. M. Gasinets, O. V. Gorina, D. I. Kaynts, and V. V. Tovt, “Obtaining and Crystallization Peculiarities of Antimony Containing Chalcohalogenide Glasses,” Ferroelectrics 372(1), 87–89 (2008). [CrossRef]
  20. S. R. Lukic, D. M. Petrović, I. O. Guth, and M. I. Avramov, “Complex non-crystalline chalcogenides: technology of preparation and spectral characteristics,” J. Res. Phys. 30(2), 111–130 (2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited