OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 5 — Sep. 1, 2011
  • pp: 1009–1018

Spatio-spectral characterization of photonic meta-atoms with electron energy-loss spectroscopy [Invited]

Felix von Cube, Stephan Irsen, Jens Niegemann, Christian Matyssek, Wolfram Hergert, Kurt Busch, and Stefan Linden  »View Author Affiliations

Optical Materials Express, Vol. 1, Issue 5, pp. 1009-1018 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1642 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Scanning transmission electron microscopy in combination with electron energy-loss spectroscopy is a powerful tool for the spatial and spectral characterization of the plasmonic modes of lithographically defined photonic meta-atoms. As an example, we present a size dependence study of the resonance energies of the plasmonic modes of a series of isolated split-ring resonators. Furthermore, we show that the comparison of the plasmonic maps of a split-ring resonator and the corresponding complementary split-ring resonator allows a direct visualization of Babinet’s principle. Our experiments are in good agreement with numerical calculations based on a discontinuous Galerkin time-domain approach.

© 2011 OSA

OCIS Codes
(160.3918) Materials : Metamaterials
(180.4243) Microscopy : Near-field microscopy
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:

Original Manuscript: July 5, 2011
Revised Manuscript: August 16, 2011
Manuscript Accepted: August 16, 2011
Published: August 24, 2011

Virtual Issues
Nanoplasmonics and Metamaterials (2011) Optical Materials Express

Felix von Cube, Stephan Irsen, Jens Niegemann, Christian Matyssek, Wolfram Hergert, Kurt Busch, and Stefan Linden, "Spatio-spectral characterization of photonic meta-atoms with electron energy-loss spectroscopy [Invited]," Opt. Mater. Express 1, 1009-1018 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science306(5700), 1351–1353 (2004). [CrossRef] [PubMed]
  2. S. Zhang, W. J. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett.94(3), 037402 (2005). [CrossRef] [PubMed]
  3. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95(20), 203901 (2005). [CrossRef] [PubMed]
  4. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics1(1), 41–48 (2007). [CrossRef]
  5. C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science315(5808), 47–49 (2007). [CrossRef] [PubMed]
  6. A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett.97(17), 177401 (2006). [CrossRef] [PubMed]
  7. S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett.102(2), 023901 (2009). [CrossRef] [PubMed]
  8. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009). [CrossRef] [PubMed]
  9. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999). [CrossRef]
  10. J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys.3(5), 348–353 (2007). [CrossRef]
  11. M. Bosman, V. J. Keast, M. Watanabe, A. I. Maaroof, and M. B. Cortie, “Mapping surface plasmons at the nanometre scale with an electron beam,” Nanotechnology18(16), 165505 (2007). [CrossRef]
  12. M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett.9(1), 399–404 (2009). [CrossRef] [PubMed]
  13. B. Schaffer, U. Hohenester, A. Trügler, and F. Hofer, “High-resolution surface plasmon imaging of gold nanoparticles by energy-filtered transmission electron microscopy,” Phys. Rev. B79(4), 041401 (2009). [CrossRef]
  14. M. N’Gom, S. Li, G. Schatz, R. Erni, A. Agarwal, N. Kotov, and T. Norris, “Electron-beam mapping of plasmon resonances in electromagnetically interacting gold nanorods,” Phys. Rev. B80(11), 113411 (2009). [CrossRef]
  15. F. Song, T. Wang, X. Wang, C. Xu, L. He, J. Wan, C. Van Haesendonck, S. P. Ringer, M. Han, Z. Liu, and G. Wang, “Visualizing plasmon coupling in closely spaced chains of Ag nanoparticles by electron energy-loss spectroscopy,” Small6(3), 446–451 (2010). [CrossRef] [PubMed]
  16. W. Sigle, J. Nelayah, C. T. Koch, and P. A. van Aken, “Electron energy losses in Ag nanoholes--from localized surface plasmon resonances to rings of fire,” Opt. Lett.34(14), 2150–2152 (2009). [CrossRef] [PubMed]
  17. G. Boudarham, N. Feth, V. Myroshnychenko, S. Linden, J. García de Abajo, M. Wegener, and M. Kociak, “Spectral imaging of individual split-ring resonators,” Phys. Rev. Lett.105(25), 255501 (2010). [CrossRef] [PubMed]
  18. A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. W. Yang, “High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures,” Nano Lett.11(3), 1323–1330 (2011). [CrossRef] [PubMed]
  19. F. J. García de Abajo and M. Kociak, “Probing the photonic local density of states with electron energy loss spectroscopy,” Phys. Rev. Lett.100(10), 106804 (2008). [CrossRef] [PubMed]
  20. U. Hohenester, H. Ditlbacher, and J. R. Krenn, “Electron-energy-loss spectra of plasmonic nanoparticles,” Phys. Rev. Lett.103(10), 106801 (2009). [CrossRef] [PubMed]
  21. T. Walther, E. Quandt, H. Stegmann, A. Thesen, and G. Benner, “First experimental test of a new monochromated and aberration-corrected 200 kV field-emission scanning transmission electron microscope,” Ultramicroscopy106(11-12), 963–969 (2006). [CrossRef] [PubMed]
  22. J. S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods (Springer, 2008).
  23. J. Niegemann, M. König, K. Stannigel, and K. Busch, “Higher-order time-domain methods for the analysis of nano-photonic systems,” Photonics Nanostruct. Fundam. Appl.7(1), 2–11 (2009). [CrossRef]
  24. K. Stannigel, M. König, J. Niegemann, and K. Busch, “Discontinuous Galerkin time-domain computations of metallic nanostructures,” Opt. Express17(17), 14934–14947 (2009). [CrossRef] [PubMed]
  25. K. Busch, M. König, and J. Niegemann, “Discontinuous Galerkin methods in nanophotonics,” Laser Photon. Rev. (to be published), doi:. [CrossRef]
  26. C. Matyssek, J. Niegemann, W. Hergert, and K. Busch, “Computing electron energy loss spectra with the Discontinuous Galerkin Time-Domain method,” Photonics Nanostruct. Fundam. Appl. (to be published), doi:. [CrossRef]
  27. P.-B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  28. C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express14(19), 8827–8836 (2006). [CrossRef] [PubMed]
  29. M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Single-slit split-ring resonators at optical frequencies: limits of size scaling,” Opt. Lett.31(9), 1259–1261 (2006). [CrossRef] [PubMed]
  30. F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett.93(19), 197401 (2004). [CrossRef] [PubMed]
  31. T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, “Babinet’s principle for optical frequency metamaterials and nanoantennas,” Phys. Rev. B76(3), 033407 (2007). [CrossRef]
  32. A. Bitzer, A. Ortner, H. Merbold, T. Feurer, and M. Walther, “Terahertz near-field microscopy of complementary planar metamaterials: Babinet’s principle,” Opt. Express19(3), 2537–2545 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (1120 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited