OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 5 — Sep. 1, 2011
  • pp: 1034–1039

A tunable three layer phase mask for single laser exposure 3D photonic crystal generations: bandgap simulation and holographic fabrication

Kris Ohlinger, Hualiang Zhang, Yuankun Lin, Di Xu, and Kevin P. Chen  »View Author Affiliations


Optical Materials Express, Vol. 1, Issue 5, pp. 1034-1039 (2011)
http://dx.doi.org/10.1364/OME.1.001034


View Full Text Article

Enhanced HTML    Acrobat PDF (1966 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Through the use of a multi-layer phase mask to produce five-beam interference, three-dimensional photonic crystals can be formed through single exposure to a photoresist. In these holographically formed structures, the interconnectivity is controlled by the relative phase difference among contributing beams. Photonic band gaps are calculated and the simulation shows a maximum bandgap of 18% of the middle gap frequency when the phase difference is optimized. A three-layer phase mask is fabricated by placing a spacer layer between two orthogonally-orientated gratings. The phase difference is controlled by thermal-tuning of the spacer thickness. Photonic crystal templates are holographically fabricated in a photosensitive polymer using the phase mask.

© 2011 OSA

OCIS Codes
(160.5293) Materials : Photonic bandgap materials
(050.6875) Diffraction and gratings : Three-dimensional fabrication

ToC Category:
Artificially Engineered Structures

History
Original Manuscript: June 7, 2011
Revised Manuscript: August 17, 2011
Manuscript Accepted: August 21, 2011
Published: August 24, 2011

Citation
Kris Ohlinger, Hualiang Zhang, Yuankun Lin, Di Xu, and Kevin P. Chen, "A tunable three layer phase mask for single laser exposure 3D photonic crystal generations: bandgap simulation and holographic fabrication," Opt. Mater. Express 1, 1034-1039 (2011)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-5-1034


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science293(5532), 1123–1125 (2001). [CrossRef] [PubMed]
  2. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328(5976), 337–339 (2010). [CrossRef] [PubMed]
  3. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun.89(5), 413–416 (1994). [CrossRef]
  4. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, A. Geoffrey, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature405(6785), 437–440 (2000). [CrossRef] [PubMed]
  5. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3(7), 444–447 (2004). [CrossRef] [PubMed]
  6. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000). [CrossRef] [PubMed]
  7. S. Yang, M. Megens, J. Aizenberg, P. Wiltzius, P. M. Chaikin, and W. B. Russel, “Creating periodic three-dimensional structures by multibeam interference of visible laser,” Chem. Mater.14(7), 2831–2833 (2002). [CrossRef]
  8. T. Y. M. Chan, O. Toader, and S. John, “Photonic band-gap formation by optical-phase-mask lithography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.73(4), 046610 (2006). [CrossRef] [PubMed]
  9. O. Toader, T. Y. M. Chan, and S. John, “Diamond photonic band gap synthesis by umbrella holographic lithography,” Appl. Phys. Lett.89(10), 101117 (2006). [CrossRef]
  10. Y. Zhong, L. Wu, H. Su, K. S. Wong, and H. Wang, “Fabrication of photonic crystals with tunable surface orientation by holographic lithography,” Opt. Express14(15), 6837–6843 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-15-6837 . [CrossRef] [PubMed]
  11. Y. K. Pang, J. C. Lee, C. T. Ho, and W. Y. Tam, “Realization of woodpile structure using optical interference holography,” Opt. Express14(20), 9113–9119 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-20-9113 . [CrossRef] [PubMed]
  12. Y. Lin, P. R. Herman, and K. Darmawikarta, “Design and holographic fabrication of tetragonal and cubic photonic crystals with phase mask: toward the mass-production of three-dimensional photonic crystals,” Appl. Phys. Lett.86(7), 071117 (2005). [CrossRef]
  13. Y. Lin, A. Harb, D. Rodriguez, K. Lozano, D. Xu, and K. P. Chen, “Fabrication of two-layer integrated phase mask for single-beam and single-exposure fabrication of three-dimensional photonic crystal,” Opt. Express16(12), 9165–9172 (2008), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-16-12-9165 . [CrossRef] [PubMed]
  14. D. Chanda, L. E. Abolghasemi, M. Haque, M. L. Ng, and P. R. Herman, “Multi-level diffractive optics for single laser exposure fabrication of telecom-band diamond-like 3-dimensional photonic crystals,” Opt. Express16(20), 15402–15414 (2008), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-16-20-15402 . [CrossRef] [PubMed]
  15. D. Xu, K. P. Chen, A. Harb, D. Rodriguez, K. Lozano, and Y. Lin, “Phase tunable holographic fabrication for three-dimensional photonic crystal templates by using a single optical element,” Appl. Phys. Lett.94(23), 231116 (2009). [CrossRef]
  16. G. Y. Dong, L. Z. Cai, X. L. Yang, X. X. Shen, X. F. Meng, X. F. Xu, and Y. R. Wang, “Holographic design and band gap evolution of photonic crystals formed with five-beam symmetric umbrella configuration,” Opt. Express14(18), 8096–8102 (2006), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-14-18-8096 . [CrossRef] [PubMed]
  17. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express8(3), 173–190 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173 . [CrossRef] [PubMed]
  18. Y. Lin, D. Rivera, and K. P. Chen, “Woodpile-type photonic crystals with orthorhombic or tetragonal symmetry formed through phase mask techniques,” Opt. Express14(2), 887–892 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-2-887 . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited