OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 5 — Sep. 1, 2011
  • pp: 1040–1050

Domain-controlled laser ceramics toward Giant Micro-photonics [Invited]

Takunori Taira  »View Author Affiliations

Optical Materials Express, Vol. 1, Issue 5, pp. 1040-1050 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (6616 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Transparent laser ceramics have been demonstrated to offer tremendous processing and design advantages in the diode-pumped solid-state laser field. Successfully developed composite Nd:YAG/Cr:YAG ceramics realized a multi-megawatt three-beam output microchip laser for efficient engine ignition. After a progress review for Giant Micro-photonics, including their wavelength extension with micro-domain controlling, we’d like to discuss the next generation of high-brightness lasers based on anisotropic ceramics. The capability of transparent anisotropic ceramics, by using a new crystal orientation process based on large magnetic anisotropy induced by 4f electrons, offers extremely high-power laser materials such as RE:FAP and patterning process for multi-function integrated monolithic solid-state lasers.

© 2011 OSA

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(140.3580) Lasers and laser optics : Lasers, solid-state

ToC Category:
Laser Materials

Original Manuscript: June 23, 2011
Revised Manuscript: August 24, 2001
Manuscript Accepted: August 25, 2011
Published: August 30, 2011

Virtual Issues
Advances in Optical Materials (2011) Optical Materials Express

Takunori Taira, "Domain-controlled laser ceramics toward Giant Micro-photonics [Invited]," Opt. Mater. Express 1, 1040-1050 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Taira, “Micro solid-state photonics—review,” Rev. Laser Eng.37, 227–234 (2009).
  2. R. L. Byer, “Diode laser–pumped solid-state lasers,” Science239(4841), 742–747 (1988). [CrossRef] [PubMed]
  3. P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, “Room-temperature diode-pumped Yb:YAG laser,” Opt. Lett.16(14), 1089–1091 (1991). [CrossRef] [PubMed]
  4. A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B58, 365–372 (1994).
  5. A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron.13(3), 598–609 (2007). [CrossRef]
  6. D. S. Sumida and T. Y. Fan, “Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media,” Opt. Lett.19(17), 1343–1345 (1994). [CrossRef] [PubMed]
  7. H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron.3(1), 105–116 (1997). [CrossRef]
  8. T. Taira, B. Tulloch, and R. L. Byer, “Single axial mode oscillated Yb:YAG lasers,” in Extended Abstracts, 55th Autumn Meeting for Japan Society of Applied Physics (1994), Vol. 21a-E-7, p. 893.
  9. T. Taira, W. M. Tulloch, and R. L. Byer, “Modeling of quasi-three-level lasers and operation of cw Yb:YAG lasers,” Appl. Opt.36(9), 1867–1874 (1997). [CrossRef] [PubMed]
  10. T. Taira, J. Saikawa, T. Kobayashi, and R. L. Byer, “Diode-pumped tunable Yb:YAG miniature laser at room temperature: modeling and experiment,” IEEE J. Sel. Top. Quantum Electron.3(1), 100–104 (1997). [CrossRef]
  11. T. Taira, “RE3+-ion-doped YAG ceramic lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 798–809 (2007). [CrossRef]
  12. T. Taira, “Ceramic YAG lasers,” C. R. Phys.8(2), 138–152 (2007). [CrossRef]
  13. A. Ikesue, Y. L. Aung, T. Taira, T. Kamimura, K. Yoshida, and G. Messing, “Progress in ceramic lasers,” Annu. Rev. Mater. Res.36(1), 397–429 (2006). [CrossRef]
  14. A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc.78(4), 1033–1040 (1995). [CrossRef]
  15. T. Taira, A. Ikesue, and K. Yoshida, “Diode pumped Nd:YAG ceramics lasers,” in Advanced Solid State Lasers, W. Bosenberg and M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1998), paper CS4.
  16. I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett.77(7), 939–941 (2000). [CrossRef]
  17. J. Lu, J. Song, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. Kudryashov, “High-power Nd: Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys.39(Part 2, No. 10B), L1048–L1050 (2000). [CrossRef]
  18. R. Yamamoto, B. S. Bhachu, K. P. Cutter, S. N. Fochs, S. A. Letts, C. W. Parks, M. D. Rotter, and T. F. Soules, “The use of large transparent ceramics in a high powered, diode pumped solid state laser,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2008), paper WC5.
  19. T. Taira, A. Ikesue, and K. Yoshida, “Performance of highly Nd3+-doped YAG ceramic microchip laser,” in Proc. Conf. Lasers Electro-Opt. (1999), paper CTak39, pp. 136–137.
  20. J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Absorption, emission spectrum properties, and efficient laser performances of Yb:Y3ScAl4O12 ceramics,” Appl. Phys. Lett.85(11), 1898–1900 (2004). [CrossRef]
  21. M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, M. Noriyuki, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped ultrashort-pulse generation based on Yb3+:Sc2O3 and Yb3+:Y2O3 ceramic multi-gain-media oscillator,” Opt. Express17(5), 3353–3361 (2009). [CrossRef] [PubMed]
  22. M. Tsunekane and T. Taira, “300 W continuous-wave operation of a diode edge-pumped, hybrid composite Yb:YAG microchip laser,” Opt. Lett.31(13), 2003–2005 (2006). [CrossRef] [PubMed]
  23. M. Tsunekane and T. Taira, “High-power operation of diode edge-pumped, composite all-ceramic Yb: Y3Al5O12 microchip laser,” Appl. Phys. Lett.90(12), 121101 (2007). [CrossRef]
  24. S. J. McNaught H. Komine, S. B. Weiss, R. Simpson, A.M. F. Johnson, J. Machan, C. P. Asman, M. Weber, G. C. Jones, M. M. Valley, A. Jankevics, D. Burchman, M. McClellan, J. Sollee, J. Marmo, and H. Injeyan, “100 kW coherently combined slab MOPAs,” in Conference on Quantum Electronics and Laser Science Conference on Lasers and Electro-Optics, CLEO/QELS (2009), paper CThA1.
  25. A. E. Siegman, Lasers (Unversity Science, 1986), pp. 1004–1040.
  26. J. J. Zayhowski and C. Dill, “Diode-pumped passively Q-switched picosecond microchip lasers,” Opt. Lett.19(18), 1427–1429 (1994). [CrossRef] [PubMed]
  27. T. Taira and T. Kobayashi, “Q-switching and frequency doubling of solid-state lasers by a single intracavity KTP crystal,” IEEE J. Quantum Electron.30(3), 800–804 (1994). [CrossRef]
  28. N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys.40(Part 1, No. 3A), 1253–1259 (2001). [CrossRef]
  29. J. J. Zayhowski and A. L. Wilson, “Pump-induced bleaching of the saturable absorber in short-pulse Nd:YAG/Cr4+:YAG passively Q-switched microchip lasers,” IEEE J. Quantum Electron.39(12), 1588–1593 (2003). [CrossRef]
  30. H. Sakai, H. Kan, and T. Taira, “>1 MW peak power single-mode high-brightness passively Q-switched Nd 3+:YAG microchip laser,” Opt. Express16(24), 19891–19899 (2008). [CrossRef] [PubMed]
  31. M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron.46(2), 277–284 (2010). [CrossRef]
  32. T. Taira, “High brightness microchip laser and engine ignition,” Rev. Laser Eng.38, 576 (2010).
  33. N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express19(10), 9378–9384 (2011). [CrossRef] [PubMed]
  34. S. Hayashi, T. Shibuya, H. Sakai, T. Taira, C. Otani, Y. Ogawa, and K. Kawase, “Tunability enhancement of a terahertz-wave parametric generator pumped by a microchip Nd:YAG laser,” Appl. Opt.48(15), 2899–2902 (2009). [CrossRef] [PubMed]
  35. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127(6), 1918–1939 (1962). [CrossRef]
  36. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992). [CrossRef]
  37. E. Innerhofer, F. Brunner, S. V. Marchese, R. Paschotta, G. Arisholm, S. Kurimura, K. Kitamura, T. Usami, H. Ito, and U. Keller, “Analysis of nonlinear wavelength conversion system for a red–green–blue laser-projection source,” J. Opt. Soc. Am. B23(2), 265–275 (2006). [CrossRef]
  38. H. Ishizuki, T. Taira, S. Kurimura, J. H. Ro, and M. Cha, “Periodic poling in 3-mm-thick MgO:LiNbO3 crystals,” Jpn. J. Appl. Phys.42(Part 2, No. 2A), L108–L110 (2003). [CrossRef]
  39. H. Ishizuki, I. Shoji, and T. Taira, “Periodical poling characteristics of congruent MgO:LiNbO3 crystals at elevated temperature,” Appl. Phys. Lett.82(23), 4062–4064 (2003). [CrossRef]
  40. H. Ishizuki and T. Taira, “High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO:LiNbO3 device with a 5mm × 5mm aperture,” Opt. Lett.30(21), 2918–2920 (2005). [CrossRef] [PubMed]
  41. J. Saikawa, M. Fujii, H. Ishizuki, and T. Taira, “High-energy, narrow-bandwidth periodically poled Mg-doped LiNbO3 optical parametric oscillator with a volume Bragg grating,” Opt. Lett.32(20), 2996–2998 (2007). [CrossRef] [PubMed]
  42. R. Bhushan, H. Yoshida, K. Tsubakimoto, H. Fujita, M. Nakatsuka, N. Miyanaga, Y. Izawa, H. Ishizuki, and T. Taira, “High efficiency and high energy parametric wavelength conversion using a large aperture periodically poled MgO:LiNbO3,” Opt. Commun.281(14), 3902–3905 (2008). [CrossRef]
  43. J. Saikawa, M. Miyazaki, M. Fujii, H. Ishizuki, and T. Taira, “High-energy, broadly tunable, narrow-bandwidth mid-infrared optical parametric system pumped by quasi-phase-matched devices,” Opt. Lett.33(15), 1699–1701 (2008). [CrossRef] [PubMed]
  44. M. Miyazaki, J. Saikawa, H. Ishizuki, T. Taira, and M. Fujii, “Isomer selective infrared spectroscopy of supersonically cooled cis- and trans-N-phenylamides in the region from the amide band to NH stretching vibration,” Phys. Chem. Chem. Phys.11(29), 6098–6106 (2009). [CrossRef] [PubMed]
  45. X. Gu, G. Marcus, Y. Deng, T. Metzger, C. Teisset, N. Ishii, T. Fuji, A. Baltuska, R. Butkus, V. Pervak, H. Ishizuki, T. Taira, T. Kobayashi, R. Kienberger, and F. Krausz, “Generation of carrier-envelope-phase-stable 2-cycle 740-μJ pulses at 21-μm carrier wavelength,” Opt. Express17(1), 62–69 (2009). [CrossRef] [PubMed]
  46. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Quantum Electron.13(3), 448–459 (2007). [CrossRef]
  47. S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B80(6), 635–638 (2005). [CrossRef]
  48. S. A. Payne, L. D. Deloach, L. K. Smith, W. L. Kway, J. B. Tassano, W. F. Krupke, B. H. T. Chai, and G. Loutts, “Ytterbium-doped apatite-structure crystals: a new class of laser materials,” J. Appl. Phys.76(1), 497–503 (1994). [CrossRef]
  49. A. Bayramian, J. Armstrong, G. Beer, R. Campbell, B. Chai, R. Cross, A. Erlandson, Y. Fei, B. Freitas, R. Kent, J. Menapace, W. Molander, K. Schaffers, C. Siders, S. Sutton, J. Tassano, S. Telford, C. Ebbers, J. Caird, and C. Barty, “High-average-power femto-petawatt laser pumped by the Mercury laser facility,” J. Opt. Soc. Am. B25(7), B57–B61 (2008). [CrossRef]
  50. T. Taira, A. Mukai, Y. Nozawa, and T. Kobayashi, “Single-mode oscillation of laser-diode-pumped Nd:YVO4 microchip lasers,” Opt. Lett.16(24), 1955–1957 (1991). [CrossRef] [PubMed]
  51. P. Zhu, D. Li, P. Hu, A. Schell, P. Shi, C. R. Haas, N. Wu, and K. Du, “High efficiency 165 W near-diffraction-limited Nd:YVO4 slab oscillator pumped at 880 nm,” Opt. Lett.33(17), 1930–1932 (2008). [CrossRef] [PubMed]
  52. Y. Sato and T. Taira, “The studies of thermal conductivity in GdVO4, YVO4, and Y3Al5O12 measured by quasi-one-dimensional flash method,” Opt. Express14(22), 10528–10536 (2006). [CrossRef] [PubMed]
  53. J. Akiyama, Y. Sato, and T. Taira, “Laser ceramics with rare-earth-doped anisotropic materials,” Opt. Lett.35(21), 3598–3600 (2010). [CrossRef] [PubMed]
  54. J. Akiyama, Y. Sato, and T. Taira, “Laser demonstration of diode-pumped Nd3+-doped fluorapatite anisotropic ceramics,” Appl. Phys. Express4(2), 022703 (2011). [CrossRef]
  55. J. Akiyama and T. Taira, “Fabrication of rare-earth patterned laser ceramics by use of gradient magnetic field,” in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2011), paper AIWA3.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited