OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 5 — Sep. 1, 2011
  • pp: 1051–1060

Microspectroscopy on perovskite-based superlenses [Invited]

Susanne C. Kehr, Pu Yu, Yongmin Liu, Markus Parzefall, Asif I. Khan, Rainer Jacob, Marc Tobias Wenzel, Hans-Georg von Ribbeck, Manfred Helm, Xiang Zhang, Lukas M. Eng, and Ramamoorthy Ramesh  »View Author Affiliations


Optical Materials Express, Vol. 1, Issue 5, pp. 1051-1060 (2011)
http://dx.doi.org/10.1364/OME.1.001051


View Full Text Article

Enhanced HTML    Acrobat PDF (1170 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Superlenses create sub-diffraction-limit images by reconstructing the evanescent fields arising from an object. We study the lateral, vertical, and spectral field distribution of three different perovskite-based superlenses by means of scattering-type near-field microscopy. Sub-diffraction-limit resolution is observed for all samples with an image contrast depending on losses such as scattering and absorption. For the three lenses superlensing is observed at slightly different frequencies resulting in an overall broad frequency range of 3.6 THz around 20 THz.

© 2011 OSA

OCIS Codes
(100.6640) Image processing : Superresolution
(160.3220) Materials : Ionic crystals
(160.3918) Materials : Metamaterials
(180.4243) Microscopy : Near-field microscopy

ToC Category:
Metamaterials

History
Original Manuscript: July 1, 2011
Revised Manuscript: August 19, 2011
Manuscript Accepted: August 19, 2011
Published: August 30, 2011

Virtual Issues
Nanoplasmonics and Metamaterials (2011) Optical Materials Express

Citation
Susanne C. Kehr, Pu Yu, Yongmin Liu, Markus Parzefall, Asif I. Khan, Rainer Jacob, Marc Tobias Wenzel, Hans-Georg von Ribbeck, Manfred Helm, Xiang Zhang, Lukas M. Eng, and Ramamoorthy Ramesh, "Microspectroscopy on perovskite-based superlenses [Invited]," Opt. Mater. Express 1, 1051-1060 (2011)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-5-1051


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Veselago, “The electrodynamics of substances with simultaneously negative values of ɛ and μ,” Sov. Phys. Usp.10, 509–514 (1968). [CrossRef]
  2. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84, 4184–4187 (2000). [CrossRef] [PubMed]
  3. H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science316, 430–432 (2007). [CrossRef] [PubMed]
  4. J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science321, 930 (2008). [CrossRef] [PubMed]
  5. U. Leonhardt and T. Philbin, “General relativity in electrical engineering,” New J. Phys.8, 247–1–18 (2006). [CrossRef]
  6. U. Leonhardt, “Optical conformal mapping,” Science312, 1777–1780 (2006). [CrossRef] [PubMed]
  7. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312, 1780–1782 (2006). [CrossRef] [PubMed]
  8. D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314, 977–980 (2006). [CrossRef] [PubMed]
  9. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater.8, 568–571 (2009). [CrossRef]
  10. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85, 3966–3969 (2000). [CrossRef] [PubMed]
  11. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science22, 534–537 (2005). [CrossRef]
  12. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science313, 1595 (2006). [CrossRef] [PubMed]
  13. X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nature mater.7, 435–441 (2008). [CrossRef]
  14. M. C. K. Wiltshire, J. Pendy, I. Young, D. Larkman, D. Gilderdale, and J. Hajnal, “Microstructured magnetic materials for RF flux guides in magnetic resonance imaging,” Science291, 849–851 (2001). [CrossRef] [PubMed]
  15. T. J. Yen, W. Padilla, N. Fang, D. Vier, D. Smith, J. Pendry, D. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science303, 1494–1496 (2004). [CrossRef] [PubMed]
  16. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. Zhou, T. Koschny, and C. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95, 203901 (2005). [CrossRef] [PubMed]
  17. N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N. Y. Park, G. B. Stephenson, I. Stolitchnov, A. K. Taganstev, D. V. Taylor, T. Yamada, and S. Streiffer, “Ferroelectric thin films: Review of materials properties, and applications,” J. Appl. Phys.100, 051606 (2006). [CrossRef]
  18. S. Jin, T. Tiefel, M. McCormack, R. Fastnacht, R. Ramesh, and L. Chen, “Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films,” Science264, 413–415 (1994). [CrossRef] [PubMed]
  19. M. K. Wu, J. Ashburn, C. Torng, P. Hor, R. Meng, L. Gao, Z. Huang, Y. Wang, and C. Chu, “Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure,” Phys. Rev. Lett.58, 908–910 (1987). [CrossRef] [PubMed]
  20. J. Scott, Ferroelectric Memories (Springer Series in Advanced Microelectronics, Vol. 3, Heidelberg, New York, 2000).
  21. R. Waser, Nanoelectronics and Information Technology (Wiley-CH, Weinheim, 2003).
  22. S. C. Kehr, Y. Liu, L. Martin, P. Yu, M. Gajek, S.-Y. Yang, C.-H. Yang, M. Wenzel, R. Jacob, H.-G. von Ribbeck, M. Helm, X. Zhang, L. Eng, and R. Ramesh, “Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling,” Nat. Commun.2, 249, (2011). [CrossRef] [PubMed]
  23. R. Shelby, D. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292, 77–79 (2001). [CrossRef] [PubMed]
  24. W. Spitzer, R. C. Miller, D. Kleinman, and L. Howarth, “Far infrared dielectric dispersion in BaTiO3, SrTiO3, and TiO2,” Phys. Rev.126, 1710–1721 (1962). [CrossRef]
  25. S. Kamba, D. Nuzhnyy, M. Savinov, J. S̆ebek, J. Petzelt, J. Prokles̆ka, R. Haumont, and J. Kreisel, “Infrared and terahertz studies of polar phonons and magnetodielectric effect in multiferroic BiFeO3 ceramics,” Phys. Rev. B75, 024403 (2007). [CrossRef]
  26. T. D. Kang, G. S. Lee, H. S. Lee, H. Lee, Y. S. Kang, S.-J. Cho, B. Xiao, H. Morkoç, and P. G. Snyder, “Infrared ellipsometric study on PZT thin films,” J. Korean Phys. Soc.49, 1604–1610 (2006).
  27. F. Zenhausern, M. O’Boyle, and H. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett.65, 1623–1625 (1994). [CrossRef]
  28. F. Zenhausern, Y. Martin, and H. Wickramasinghe, “Scanning interferometric apertureless microscopy: Optical imaging at 10 Angstrom resolution,” Science269, 1083–1085 (1995). [CrossRef] [PubMed]
  29. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: Optical microscopy on a nanometric scale,” Science251, 1468–1470 (1991). [CrossRef] [PubMed]
  30. S. C. Schneider, J. Seidel, S. Grafström, L. Eng, S. Winnerl, D. Stehr, and M. Helm, “Impact of optical in-plane anisotropy on near-field phonon polariton spectroscopy,” Appl. Phys. Lett.90, 143101 (2007). [CrossRef]
  31. S. C. Kehr, M. Cebula, O. Mieth, T. Härtling, J. Seidel, S. Grafström, L. Eng, S. Winnerl, D. Stehr, and M. Helm, “Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser,” Phys. Rev. Lett.100, 256403 (2008). [CrossRef] [PubMed]
  32. G. Wurtz, R. Bachelot, and P. Royer, “Imaging a GaAlAs laser diode in operation using apertureless scanning near-field optical microscopy,” Eur. Phys. J. Appl. Phys.5, 269–275 (1999). [CrossRef]
  33. B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun.182, 321–328 (2000). [CrossRef]
  34. R. Hillenbrand and F. Keilmann, “Complex Optical Constants on a Subwavelength Scale,” Phys. Rev. Lett.85, 3029–3032 (2000). [CrossRef] [PubMed]
  35. R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light-matter interaction at the nanometre scale,” Nature418, 159–162 (2002). [CrossRef] [PubMed]
  36. T. Taubner, F. Keilmann, and R. Hillenbrand, “Nanomechanical Resonance Tuning and Phase Effects in Optical Near-Field Interaction,” Nano Lett.4, 1669–1672 (2004). [CrossRef]
  37. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1608 (2005). [CrossRef] [PubMed]
  38. I. Fedorov, J. Petzelt, V. Zelezny, G. A. Komandin, A. A. Volkov, K. Brooks, Y. Huang, and N. Setter, “Far-infrared dielectric response of PbTiO3 and PbZr1–xTixO3 thin ferroelectric films,” J. Phys.: Condens. Matter7, 4313–4323 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited