OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 5 — Sep. 1, 2011
  • pp: 816–831

On the bending strength of fused silica flexures fabricated by ultrafast lasers [Invited]

Yves Bellouard  »View Author Affiliations


Optical Materials Express, Vol. 1, Issue 5, pp. 816-831 (2011)
http://dx.doi.org/10.1364/OME.1.000816


View Full Text Article

Enhanced HTML    Acrobat PDF (2137 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper reports on the mechanical properties of fused silica flexures manufactured by a two-step process combining femtosecond lasers exposure below the ablation threshold and chemical etching. Flexural strengths as high as 2.7 GPa were measured, demonstrating that femtosecond lasers can be efficiently used to produce arbitrarily shaped high-strength mechanical devices, opening new opportunities for the design of monolithically integrated optomechanical devices.

© 2011 OSA

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(220.4000) Optical design and fabrication : Microstructure fabrication
(220.4880) Optical design and fabrication : Optomechanics
(230.1150) Optical devices : All-optical devices
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors

ToC Category:
Artificially Engineered Structures

History
Original Manuscript: July 13, 2011
Revised Manuscript: July 28, 2011
Manuscript Accepted: July 29, 2011
Published: August 3, 2011

Virtual Issues
Femtosecond Direct Laser Writing and Structuring of Materials (2011) Optical Materials Express

Citation
Yves Bellouard, "On the bending strength of fused silica flexures fabricated by ultrafast lasers [Invited]," Opt. Mater. Express 1, 816-831 (2011)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-5-816


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. T. Smith, Flexures (Gordon and Breach, 2000).
  2. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996). [CrossRef] [PubMed]
  3. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process.77(1), 109–111 (2003). [CrossRef]
  4. A. Szameit, D. Blömer, J. Burghoff, T. Schreiber, T. Pertsch, S. Nolte, A. Tünnermann, and F. Lederer, “Discrete nonlinear localization in femtosecond laser written waveguides in fused silica,” Opt. Express13(26), 10552–10557 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-26-10552 . [CrossRef] [PubMed]
  5. C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials,” Opt. Express17(5), 3531–3542 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-5-3531 . [CrossRef] [PubMed]
  6. G. Della Valle, S. Taccheo, R. Osellame, A. Festa, G. Cerullo, and P. Laporta, “1.5 μm single longitudinal mode waveguide laser fabricated by femtosecond laser writing,” Opt. Express15(6), 3190–3194 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-6-3190 . [CrossRef] [PubMed]
  7. L. Canioni, M. Bellec, A. Royon, B. Bousquet, and T. Cardinal, “Three-dimensional optical data storage using third-harmonic generation in silver zinc phosphate glass,” Opt. Lett.33(4), 360–362 (2008). [CrossRef] [PubMed]
  8. M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett.98(20), 201101 (2011). [CrossRef]
  9. Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, “Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser,” Opt. Lett.28(13), 1144–1146 (2003). [CrossRef] [PubMed]
  10. Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching,” Opt. Express12(10), 2120–2129 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-10-2120 . [CrossRef] [PubMed]
  11. Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Monolithic three-dimensional integration of micro-fluidic channels and optical waveguides in fused silica,” in Materials Research Society Symposium - Proceedings (2003), Vol. 782, pp. 63–68.
  12. Y. Cheng, K. Sugioka, and K. Midorikawa, “Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing,” Opt. Lett.29(17), 2007–2009 (2004). [CrossRef] [PubMed]
  13. A. Schaap, Y. Bellouard, and T. Rohrlack, “Optofluidic lab-on-a-chip for rapid algae population screening,” Biomed. Opt. Express2(3), 658–664 (2011), http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-3-658 . [CrossRef] [PubMed]
  14. Y. Bellouard, A. Said, and P. Bado, “Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica,” Opt. Express13(17), 6635–6644 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-17-6635 . [CrossRef] [PubMed]
  15. Y. Bellouard, A. A. Said, M. Dugan, and P. Bado, “Monolithic integration in fused silica: When fluidics, mechanics and optics meet in a single substrate,” ISOT 2009 International Symposium on Optomechatronic Technologies (2009), pp. 445–450.
  16. D. Bonamy, S. Prades, C. L. Rountree, L. Ponson, D. Dalmas, E. Bouchaud, K. Ravi-Chandar, and C. Guillot, “Nanoscale damage during fracture in silica glass,” Int. J. Fract.140(1-4), 3–14 (2006). [CrossRef]
  17. F. Célarié, S. Prades, D. Bonamy, L. Ferrero, E. Bouchaud, C. Guillot, and C. Marlière, “Glass breaks like metal, but at the nanometer scale,” Phys. Rev. Lett.90(7), 075504 (2003). [CrossRef] [PubMed]
  18. A. Perriot, E. Barthel, G. Kermouche, G. Quérel, and D. Vandembroucq, “On the plastic deformation of soda-lime glass–a Cr3+ luminescence study of densification,” Philos. Mag.91(7-9), 1245–1255 (2011). [CrossRef]
  19. R. J. Charles, “Static fatigue of glass. I,” J. Appl. Phys.29(11), 1549 (1958). [CrossRef]
  20. M. Tomozawa, “Fracture of glasses,” Annu. Rev. Mater. Sci.26(1), 43–74 (1996). [CrossRef]
  21. Y. S. Shiue and M. J. Matthewson, “Apparent activation energy of fused silica optical fibers in static fatigue in aqueous environments,” J. Eur. Ceram. Soc.22(13), 2325–2332 (2002). [CrossRef]
  22. Y. Bellouard, Microrobotics: Methods and Applications (Taylor & Francis / CRC Press, 2009).
  23. C. B. Ling, “On the stresses in a notched strip,” J. Appl. Mech.19, A141–A152 (1952).
  24. J. M. Paros and L. Weisbord, “How to design flexure hinges,” Mach. Des.37, 151–157 (1965).
  25. S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of etching agent and etching mechanism on femotosecond laser microfabrication of channels inside vitreous silica substrates,” J. Phys. Chem. C113(27), 11560–11566 (2009). [CrossRef]
  26. C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett.30(14), 1867–1869 (2005). [CrossRef] [PubMed]
  27. B. A. Proctor, I. Whitney, and J. W. Johnson, “The strength of fused silica,” Proc. R. Soc. Lond. A Math. Phys. Sci.297(1451), 534–557 (1967). [CrossRef]
  28. C. R. Kurkjian, P. K. Gupta, and R. K. Brow, “The strength of silicate glasses: what do we know, what do we need to know?” Int. J Appl. Glass Sci.1(1), 27–37 (2010). [CrossRef]
  29. C. P. Chen and T. H. Chang, “Fracture mechanics evaluation of optical fibers,” Mater. Chem. Phys.77, 110–116 (2003).
  30. G. Brambilla and D. N. Payne, “The ultimate strength of glass silica nanowires,” Nano Lett.9(2), 831–835 (2009). [CrossRef] [PubMed]
  31. L. G. Baikova and V. P. Pukh, “The effect of the type of chemical treatment on the strength of silica and silicate glasses,” Glass Ceram.12, 17–18 (1973).
  32. D. Hull, Fractography, Observing, Measuring and Interpreting Fracture Surface Topography (Cambridge Univ. Press, 1999), ISBN 0 521 64082 2.
  33. D. Hull, “The effect of mixed mode I/III on crack evolution in brittle solids,” Int. J. Fract.70(1), 59–79 (1995). [CrossRef]
  34. J. F. H. Custers, “Plastic deformation of glass during scratching,” Nature164(4171), 627–627 (1949). [CrossRef]
  35. K. E. Puttick, M. R. Rudman, K. J. Smith, A. Franks, and K. Lindsey, “Single-point diamond machining of glasses,” Proc. R. Soc. Lond. A Math. Phys. Sci.426(1870), 19–30 (1989). [CrossRef]
  36. O. E. Alarcón, R. E. Medrano, and P. P. Gillis, “Fracture of glass in tensile and bending tests,” Metall. Mater. Trans. A25(5), 961–968 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (549 KB)     
» Media 2: AVI (2448 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited