OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 5 — Sep. 1, 2011
  • pp: 883–889

Spectroscopic characterization of highly doped ZnO films grown by atomic-layer deposition for three-dimensional infrared metamaterials [Invited]

Andreas Frölich and Martin Wegener  »View Author Affiliations


Optical Materials Express, Vol. 1, Issue 5, pp. 883-889 (2011)
http://dx.doi.org/10.1364/OME.1.000883


View Full Text Article

Enhanced HTML    Acrobat PDF (1721 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We systematically study the optical spectra of ZnO grown by atomic-layer deposition as a function of Al (and Ti) doping concentration. The spectra measured on films are well described by fits using a Drude free-electron model. The derived plasma frequencies are consistent with the expected amount of doping and can be continuously and controllably tuned from small values to about 400 THz. The losses (damping) are also quantified. In addition, we achieve smooth conformal coatings of three-dimensional polymer templates made by direct laser writing. Altogether, Al:ZnO appears as an attractive “tunable metal” for three-dimensional infrared metamaterials or transformation-optics architectures.

© 2011 OSA

OCIS Codes
(160.4760) Materials : Optical properties
(310.3840) Thin films : Materials and process characterization
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: June 2, 2011
Revised Manuscript: July 22, 2011
Manuscript Accepted: July 22, 2011
Published: August 8, 2011

Virtual Issues
Nanoplasmonics and Metamaterials (2011) Optical Materials Express

Citation
Andreas Frölich and Martin Wegener, "Spectroscopic characterization of highly doped ZnO films grown by atomic-layer deposition for three-dimensional infrared metamaterials [Invited]," Opt. Mater. Express 1, 883-889 (2011)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-5-883


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010). [CrossRef]
  2. A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011). [CrossRef] [PubMed]
  3. X. Yu, Y.-J. Lee, R. Furstenberg, J. O. White, and P. V. Braun, “Filling fraction dependent properties of inverse opal metallic photonic crystals,” Adv. Mater. 19(13), 1689–1692 (2007). [CrossRef]
  4. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009). [CrossRef] [PubMed]
  5. F. Formanek, N. Takeyasu, T. Tanaka, K. Chiyoda, A. Ishikawa, and S. Kawata, “Three-dimensional fabrication of metallic nanostructures over large areas by two-photon polymerization,” Opt. Express 14(2), 800–809 (2006). [CrossRef] [PubMed]
  6. J. Li, M. M. Hossain, B. Jia, D. Buso, and M. Gu, “Three-dimensional hybrid photonic crystals merged with localized plasmon resonances,” Opt. Express 18(5), 4491–4498 (2010). [CrossRef] [PubMed]
  7. R. Malureanu, A. Alabastri, W. Cheng, R. Kiyan, B. Chichkov, A. Andryieuski, and A. Lavrinenko, “Enhanced broadband optical transmission in metallized woodpiles,” Appl. Phys. A 103(3), 749–753 (2011).
  8. A. Radke, T. Gissibl, T. Klotzbücher, P. V. Braun, and H. Giessen, “Three‐dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating,” Adv. Mater. 23(17), 3018–3021 (2011).
  9. J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. G. Denning, A. J. Turberfield, and C. J. Summers, “Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition,” Adv. Mater. 18(12), 1561–1565 (2006). [CrossRef]
  10. N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18(4), 457–460 (2006). [CrossRef]
  11. M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008). [CrossRef] [PubMed]
  12. I. Staude, G. von Freymann, S. Essig, K. Busch, and M. Wegener, “Waveguides in three-dimensional photonic-bandgap materials by direct laser writing and silicon double inversion,” Opt. Lett. 36(1), 67–69 (2011). [CrossRef] [PubMed]
  13. B. S. Lim, A. Rahtu, and R. G. Gordon, “Atomic layer deposition of transition metals,” Nat. Mater. 2(11), 749–754 (2003). [CrossRef] [PubMed]
  14. A. Niskanen, T. Hatanpää, K. Arstila, M. Leskelä, and M. Ritala, “Radical‐enhanced atomic layer deposition of silver thin films using phosphine‐adducted silver carboxylates,” Chem. Vap. Deposition. 13(8), 408–413 (2007). [CrossRef]
  15. C. E. Kriegler, M. S. Rill, M. Thiel, E. Müller, S. Essig, A. Frölich, G. Freymann, S. Linden, D. Gerthsen, H. Hahn, K. Busch, and M. Wegener, “Transition between corrugated metal films and split-ring-resonator arrays,” Appl. Phys. B 96(4), 749–755 (2009). [CrossRef]
  16. M. Kariniemi, J. Niinistö, T. Hatanpää, M. Kemell, T. Sajavaara, M. Ritala, and M. Leskelä, “Plasma-enhanced atomic layer deposition of silver thin films,” Chem. Mater. 23(11), 2901–2907 (2011).
  17. V. Lujala, J. Skarp, M. Tammenmaa, and T. Suntola, “Atomic layer epitaxy growth of doped zinc oxide thin films from organometals,” Appl. Surf. Sci. 82–83, 34–40 (1994). [CrossRef]
  18. M. Scharrer, X. Wu, A. Yamilov, H. Cao, and R. P. H. Chang, “Fabrication of inverted opal ZnO photonic crystals by atomic layer deposition,” Appl. Phys. Lett. 86(15), 151113 (2005). [CrossRef]
  19. J. W. Elam and S. M. George, “Growth of ZnO/Al2O3 alloy films using atomic layer deposition techniques,” Chem. Mater. 15(4), 1020–1028 (2003). [CrossRef]
  20. S. J. Kwon, “Effect of precursor-pulse on properties of Al-doped ZnO films grown by atomic layer deposition,” Jpn. J. Appl. Phys. 44(2), 1062–1066 (2005). [CrossRef]
  21. K.-S. An, W. Cho, B. K. Lee, S. S. Lee, and C. G. Kim, “Atomic layer deposition of undoped and Al-doped ZnO thin films using the Zn alkoxide precursor methylzinc isopropoxide,” J. Nanosci. Nanotechnol. 8(9), 4856–4859 (2008). [CrossRef] [PubMed]
  22. C. H. Ahn, H. Kim, and H. K. Cho, “Deposition of Al doped ZnO layers with various electrical types by atomic layer deposition,” Thin Solid Films 519(2), 747–750 (2010). [CrossRef]
  23. J. Y. Kim, Y.-J. Choi, H.-H. Park, S. Golledge, and D. C. Johnson, “Effective atomic layer deposition procedure for Al-dopant distribution in ZnO thin films,” J. Vac. Sci. Technol. A 28(5), 1111–1114 (2010). [CrossRef]
  24. J.-S. Na, G. Scarel, and G. N. Parsons, “In situ analysis of dopant incorporation, activation, and film growth during thin film ZnO and ZnO:Al atomic layer deposition,” J. Phys. Chem. C 114(1), 383–388 (2010). [CrossRef]
  25. P. Banerjee, W.-J. Lee, K.-R. Bae, S. B. Lee, and G. W. Rubloff, “Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films,” J. Appl. Phys. 108(4), 043504 (2010). [CrossRef]
  26. G. Luka, L. Wachnicki, B. S. Witkowski, T. A. Krajewski, R. Jakiela, E. Guziewicz, and M. Godlewski, “The uniformity of Al distribution in aluminum-doped zinc oxide films grown by atomic layer deposition,” Mater. Sci. Eng. B 176(3), 237–241 (2011). [CrossRef]
  27. S. Keun Kim, C. Seong Hwang, S.-H. Ko Park, and S. Jin Yun, “Comparison between ZnO films grown by atomic layer deposition using H2O or O3 as oxidant,” Thin Solid Films 478(1-2), 103–108 (2005). [CrossRef]
  28. G. V. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials 5(1), 1–7 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited