OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 5 — Sep. 1, 2011
  • pp: 953–961

Tin hypothiodiphosphate: nonlinear response in the sub-100 fs time domain

M. Imlau, V. Dieckmann, H. Badorreck, and A. Shumelyuk  »View Author Affiliations


Optical Materials Express, Vol. 1, Issue 5, pp. 953-961 (2011)
http://dx.doi.org/10.1364/OME.1.000953


View Full Text Article

Enhanced HTML    Acrobat PDF (781 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The interaction of sub-100 fs light pulses (τp ≲ 75 fs) with single crystals of nominally undoped tin hypothiodiphosphate, Sn2P2S6, is studied in the near-infrared spectral range (590 – 1630 nm). A predominant contribution of the two-photon absorption (TPA) is verified in the measurements of the sample transmission as a function of pulse intensity and of the time delay between pump and probe pulses. Scans over the photon energy show that the two-photon absorption coefficient β increases in a superlinear way for photon energies h̄ω exceeding Eg/2; for any quantum energy it is nearly independent of propagation direction and polarization of the incident beam. Such a behavior is qualitatively similar to that predicted by perturbation theory within models with allowed-forbidden transitions. The TPA coefficient saturates at a maximum value of β ≈ 8 cm GW−1 at h̄ω ≈ 1.80 eV. It drops when reaching the bandgap Eg. Using pump-probe measurements at 626 nm, a transient absorption is verified that persists for probe pulse delays much longer than the pump pulse duration, up to 2.5 ns. We discuss our results in the framework of the microscopic structure of Sn2P2S6 with emphasis on the optical generation of S small hole polarons.

© 2011 OSA

OCIS Codes
(160.4670) Materials : Optical materials
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(300.6420) Spectroscopy : Spectroscopy, nonlinear
(300.6530) Spectroscopy : Spectroscopy, ultrafast
(260.7120) Physical optics : Ultrafast phenomena

ToC Category:
Nonlinear Optical Materials

History
Original Manuscript: July 15, 2011
Revised Manuscript: August 9, 2011
Manuscript Accepted: August 10, 2011
Published: August 16, 2011

Citation
M. Imlau, V. Dieckmann, H. Badorreck, and A. Shumelyuk, "Tin hypothiodiphosphate: nonlinear response in the sub-100 fs time domain," Opt. Mater. Express 1, 953-961 (2011)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-5-953


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Dittmar and H. Schäfer, “Crystal structure of Sn2P2S6,” Z. Naturforsch. B 29B, 312–317 (1974).
  2. R. V. Gamernyk, Yu. P. Gnatenko, P. M. Bukivsij, P. A. Skubenko, and V. Yu. Slivka, “Optical and photoelectric spectroscopy of photorefractive Sn2P2S6 crystals,” J. Phys.: Condens. Matter 18, 5323–5331 (2006). [CrossRef]
  3. K. Kuepper, B. Schneider, V. Caciuc, M. Neumann, A. V. Postnikov, A. Ruediger, A. A. Grabar, and Yu. M. Vysochanskii, “Electronic structure of Sn2P2S6,” Phys. Rev. B 67, 115101 (2003). [CrossRef]
  4. Yu. M. Vysochanskii, K. Glukhov, K. Fedyo, and R. Yevych, “Charge transfer and anharmononicity in Sn2P2S6 ferroelectrics,” Ferroelectrics 414, 30–40 (2011). [CrossRef]
  5. S. G. Odoulov, A. N. Shumelyuk, U. Hellwig, R. A. Rupp, A. A. Grabar, and I. M. Stoyka, “Photorefraction in tin hypothiodiphosphate in the near infrared,” J. Opt. Soc. Am. B 13, 2352–2360 (1996). [CrossRef]
  6. A. A. Grabar, M. Jazbinsek, A. N. Shumelyuk, Yu. M. Vysochanskii, G. Montemezzani, and P. Günter, “Photorefractive effects in Sn2P2S6,” in Photorefractive Materials and Their Applications II , P. Günter and J.-P. Huignard, eds. (Springer Verlag, 2007), pp. 327–362. [CrossRef]
  7. R. Mosimann, P. Marty, T. Bach, F. Juvalta, M. M. Jazbinsek, P. Günter, A. A. Grabar, I. M. Stoyka, and M. Vysochanskii, “High-speed photorefraction at telecommunication wavelength 1.55 μm in Sn2P2S6:Te,” Opt. Lett. 32, 2330–2332 (2007). [CrossRef]
  8. A. Shumelyuk, A. Hryhorashchuk, and S. Odoulov, “Coherent optical oscillator with periodic zero-π phase modulation,” Phys. Rev. A 72, 023819 (2005). [CrossRef]
  9. A. Ruediger, O. Schirmer, S. Odoulov, A. Shumelyuk, and A. Grabar, “Studies of light-induced charge transport in Sn2P2S6 by combined EPR/optical absorption spectroscopy,” Opt. Mater. 18, 123–125 (2001). [CrossRef]
  10. A. Shumelyuk, M. Wesner, M. Imlau, and S. Odoulov, “Double-phase conjugate mirror in nominally undoped Sn2P2S6,” Opt. Lett. 34, 734–736 (2009). [CrossRef] [PubMed]
  11. A. Shumelyuk and S. Odoulov, “Light pulse manipulation in Sn2P2S6,” J. Opt. 12, 104015 (2010). [CrossRef]
  12. G. von Bally, F. Rickermann, S. Odoulov, and A. Shumelyuk, “Near-infrared holographic recording in Sn2P2S6 with nanosecond pulses,” Phys. Status Solidi A 157, 199–204 (1996). [CrossRef]
  13. T. Bach, K. Nawata, M. Jazbinsek, T. Omatsu, and P. Günter, “Optical phase conjugation of picosecond pulses at 1.06 μm in Sn2P2S6:Te for wavefront correction in high-power Nd-doped amplifier systems,” Opt. Express 18, 87–95 (2010). [CrossRef] [PubMed]
  14. A. A. Grabar, I. V. Kedyk, M. I. Gurzan, I. M. Stoika, A. A. Molnar, and Y. M. Vysochanskii, “Enhanced photorefractive properties of modified Sn2P2S6,” Opt. Commun. 188, 187–194 (2001). [CrossRef]
  15. O. Beyer, D. Maxien, K. Buse, B. Sturman, T. H. Hsiech, and D. Psaltis, “Investigation of nonlinear absorption processes with femtosecond light pulses in lithium niobate crystals,” Phys. Rev. E 71, 056603 (2005). [CrossRef]
  16. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990). [CrossRef]
  17. V. Nathan, A. H. Guenter, and S. S. Mitra, “Review of multiphoton absorption in crystalline solids,” J. Opt. Soc. Am. B 2, 294–316 (1985). [CrossRef]
  18. E. W. Van Stryland, M. A. Woodall, H. Vanherzeele, and M. J. Soileau, “Energy band-gap dependence of two-photon absorption,” Opt. Lett. 10, 490–492 (1985). [CrossRef] [PubMed]
  19. D. C. Hutchings and B. S. Wherrett, “Theory of anisotropy of two-photon absorption in zinc-blende semiconductors,” Phys. Rev. B 49, 2418–2426 (1994). [CrossRef]
  20. A. Ruediger, “Light induced charge transfer processes and pyroelectric luminescence in Sn2P2S6,” PhD thesis (University of Osnabrück, 2001).
  21. D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and T. Woike, “Lifetime of small polarons in iron-doped lithium-niobate crystals,” J. Appl. Phys. 87, 1034–1041 (2000). [CrossRef]
  22. O. F. Schirmer, “O− bound small polarons in oxide materials,” J. Phys.: Condens. Matter 18, R667–R704 (2006). [CrossRef]
  23. P. Herth, T. Granzow, D. Schaniel, Th. Woike, M. Imlau, and E. Krätzig, “Evidence for light-induced hole polarons in LiNbO3,” Phys. Rev. Lett. 95, 067404 (2005). [CrossRef] [PubMed]
  24. S. Torbrügge, M. Imlau, B. Schoke, C. Merschjann, O. F. Schirmer, S. Vernay, A. Gross, V. Wesemann, and D. Rytz, “Optically generated small electron and hole polarons in nominally undoped and Fe-doped KNbO3 investigated by transient absorption spectroscopy,” Phys. Rev. B 78, 125112 (2008). [CrossRef]
  25. Y. Qiu, K. B. Ucer, and R. T. Williams, “Formation time of a small electron polaron in LiNbO3: measurements and interpretation,” Phys. Status Solidi C 2, 232–235 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited