OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 6 — Oct. 1, 2011
  • pp: 1127–1138

Surface plasmon coupled emission using conjugated light-emitting polymer films [Invited]

Hong Yoon, Stefan A. Maier, Donal D. C. Bradley, and Paul N. Stavrinou  »View Author Affiliations


Optical Materials Express, Vol. 1, Issue 6, pp. 1127-1138 (2011)
http://dx.doi.org/10.1364/OME.1.001127


View Full Text Article

Enhanced HTML    Acrobat PDF (1705 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We experimentally investigate surface plasmon coupled emission (SPCE) in the Kretschmann geometry using thin conjugated polymer films. The broad spectral emission from the polymer films usefully demonstrates how the spectral behaviour of SPCE follows clearly from the underlying dispersion of surface plasmon polaritons supported by the configuration. We pay particular attention to how the spectral bandwidth of the underlying emissive layer impacts on the overall performance. Overall the work highlights the many factors that may be considered when designing optimum optoelectronic devices based on metal-organic multilayers.

© 2011 OSA

OCIS Codes
(160.4890) Materials : Organic materials
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Plasmonics

History
Original Manuscript: July 14, 2011
Revised Manuscript: August 25, 2011
Manuscript Accepted: September 20, 2011
Published: September 21, 2011

Virtual Issues
Nanoplasmonics and Metamaterials (2011) Optical Materials Express

Citation
Hong Yoon, Stefan A. Maier, Donal D. C. Bradley, and Paul N. Stavrinou, "Surface plasmon coupled emission using conjugated light-emitting polymer films [Invited]," Opt. Mater. Express 1, 1127-1138 (2011)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-6-1127


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Ford and W. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep.113(4), 195–287 (1984). [CrossRef]
  2. W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt.45(4), 661–699 (1998). [CrossRef]
  3. V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small6(22), 2498–2507 (2010). [CrossRef] [PubMed]
  4. A. Hryciw, Y. C. Jun, and M. L. Brongersma, “Plasmon-enhanced emission from optically-doped MOS light sources,” Opt. Express17(1), 185–192 (2009). [CrossRef] [PubMed]
  5. J. F. Revelli, “Excitation of waveguide modes in organic light-emitting diode structures by classical dipole oscillators,” Appl. Opt.45(27), 7151–7165 (2006). [CrossRef] [PubMed]
  6. T. Neal, K. Okamoto, and A. Scherer, “Surface plasmon enhanced emission from dye doped polymer layers,” Opt. Express13(14), 5522–5527 (2005). [CrossRef] [PubMed]
  7. P. Hobson, S. Wedge, J. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)14(19), 1393–1396 (2002). [CrossRef]
  8. S. Wedge, J. E. Wasey, W. L. Barnes, and I. Sage, “Coupled surface plasmon-polariton mediated photoluminescence from a top-emitting organic light-emitting structure,” Appl. Phys. Lett.85(2), 182–184 (2004). [CrossRef]
  9. T. D. Heidel, J. K. Mapel, M. Singh, K. Celebi, and M. A. Baldo, “Surface plasmon polariton mediated energy transfer in organic photovoltaic devices,” Appl. Phys. Lett.91(9), 093506 (2007). [CrossRef]
  10. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005). [CrossRef] [PubMed]
  11. S. Shi, Z. Zhang, M. He, X. Li, J. Yang, and J. Du, “Analysis of surface-plasmon-polaritons-assisted interference imaging by using silver film with rough surface,” Opt. Express18(10), 10685–10693 (2010). [CrossRef] [PubMed]
  12. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009). [CrossRef] [PubMed]
  13. P. Andrew and W. L. Barnes, “Energy transfer across a metal film mediated by surface plasmon polaritons,” Science306(5698), 1002–1005 (2004). [CrossRef] [PubMed]
  14. F. Reil, U. Hohenester, J. R. Krenn, and A. Leitner, “Förster-type resonant energy transfer influenced by metal nanoparticles,” Nano Lett.8(12), 4128–4133 (2008). [CrossRef] [PubMed]
  15. W. Wei, S. Li, L. Qin, C. Xue, J. E. Millstone, X. Xu, G. C. Schatz, and C. A. Mirkin, “Surface plasmon-mediated energy transfer in heterogap Au-Ag nanowires,” Nano Lett.8(10), 3446–3449 (2008). [CrossRef] [PubMed]
  16. V. K. Komarala, A. L. Bradley, Y. P. Rakovich, S. J. Byrne, Y. K. Gun’ko, and A. L. Rogach, “Surface plasmon enhanced Förster resonance energy transfer between the CdTe quantum dots,” Appl. Phys. Lett.93(12), 123102 (2008). [CrossRef]
  17. I. Gryczynski, J. Malicka, Z. Gryczynski, K. Nowaczyk, and J. R. Lakowicz, “Ultraviolet surface plasmon-coupled emission using thin aluminum films,” Anal. Chem.76(14), 4076–4081 (2004). [CrossRef] [PubMed]
  18. M. J. R. Previte, Y. Zhang, K. Aslan, and C. D. Geddes, “Surface plasmon coupled fluorescence from copper substrates,” Appl. Phys. Lett.91(15), 151902 (2007). [CrossRef]
  19. K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Observation of surface plasmon coupled emission using thin platinum films,” Chem. Phys. Lett.465(1-3), 92–95 (2008). [CrossRef] [PubMed]
  20. G. Winter and W. L. Barnes, “Emission of light through thin silver films via near-field coupling to surface plasmon polaritons,” Appl. Phys. Lett.88(5), 051109 (2006). [CrossRef]
  21. L. Luan, P. R. Sievert, W. Mu, Z. Hong, and J. B. Ketterson, “Highly directional fluorescence emission from dye molecules embedded in a dielectric layer adjacent to a silver film,” New J. Phys.10(7), 073012 (2008). [CrossRef]
  22. S. Hayashi, Y. Yamada, A. Maekawa, and M. Fujii, “Surface plasmon-mediated light emission from dye layer in reverse attenuated total reflection geometry,” Jpn. J. Appl. Phys.47(2), 1152–1157 (2008). [CrossRef]
  23. K. Kato, M. Imaia, Y. Ohdaira, K. Shinbo, and F. Kaneko, “Surface plasmon emission light from Ag/MgF2/organic dye/MgF2/Ag films,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)472(1), 51/[441]–59/[449] (2007). [CrossRef]
  24. I. Gryczynski, J. Malicka, W. Jiang, H. Fischer, W. C. W. Chan, Z. Gryczynski, W. Grudzinski, and J. R. Lakowicz, “Surface-plasmon-coupled emission of quantum dots,” J. Phys. Chem. B109(3), 1088–1093 (2005). [CrossRef] [PubMed]
  25. M. H. Chowdhury, S. N. Malyn, K. Aslan, J. R. Lakowicz, and C. D. Geddes, “First observation of surface plasmon-coupled chemiluminescence (SPCC),” Chem. Phys. Lett.435(1-3), 114–118 (2007). [CrossRef] [PubMed]
  26. Y. Kostov, D. S. Smith, L. Tolosa, G. Rao, I. Gryczynski, Z. Gryczynski, J. Malicka, and J. R. Lakowicz, “Directional surface plasmon-coupled emission from a 3 nm green fluorescent protein monolayer,” Biotechnol. Prog.21(6), 1731–1735 (2005). [CrossRef] [PubMed]
  27. K. Kato, “Attenuated total reflection and emission due to surface plasmon excitation of layer-by-layer ultrathin films containing azo-dye,” Thin Solid Films438–439, 101–107 (2003). [CrossRef]
  28. J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics4(7), 438–446 (2010). [CrossRef]
  29. B. K. Yap, R. Xia, M. Campoy-Quiles, P. N. Stavrinou, and D. D. C. Bradley, “Simultaneous optimization of charge-carrier mobility and optical gain in semiconducting polymer films,” Nat. Mater.7(5), 376–380 (2008). [CrossRef] [PubMed]
  30. R. Xia, G. Heliotis, Y. Hou, and D. D. C. Bradley, “Fluorene-based conjugated polymer optical gain media,” Org. Electron.4(2–3), 165–177 (2003). [CrossRef]
  31. D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics2(11), 684–687 (2008). [CrossRef]
  32. R. Xia, G. Heliotis, and D. D. C. Bradley, “Fluorene-based polymer gain media for solid-state laser emission across the full visible spectrum,” Appl. Phys. Lett.82(21), 3599–3601 (2003). [CrossRef]
  33. G. Heliotis, R. Xia, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Two-dimensional distributed feedback lasers using a broadband, red polyfluorene gain medium,” J. Appl. Phys.96(12), 6959–6965 (2004). [CrossRef]
  34. M. Campoy-Quiles, G. Heliotis, R. Xia, M. Ariu, M. Pintani, P. Etchegoin, and D. D. C. Bradley, “Ellipsometric characterization of the optical constants of polyfluorene gain media,” Adv. Funct. Mater.15(6), 925–933 (2005). [CrossRef]
  35. M. Nieto-Vesperinas and E. Wolf, “Generalized stokes reciprocity relations for scattering from dielectric objects of arbitrary shape,” J. Opt. Soc. Am. A3(12), 2038–2046 (1986). [CrossRef]
  36. J. Courtois, J. Courty, and J. C. Mertz, “Internal dynamics of multilevel atoms near a vacuum-dielectric interface,” Phys. Rev. A53(3), 1862–1878 (1996). [CrossRef] [PubMed]
  37. K. Celebi, T. D. Heidel, and M. A. Baldo, “Simplified calculation of dipole energy transport in a multilayer stack using dyadic Green’s functions,” Opt. Express15(4), 1762–1772 (2007). [CrossRef] [PubMed]
  38. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  39. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter33(8), 5186–5201 (1986). [CrossRef] [PubMed]
  40. C. Chen, P. Berini, D. Feng, S. Tanev, and V. Tzolov, “Efficient and accurate numerical analysis of multilayer planar optical waveguides in lossy anisotropic media,” Opt. Express7(8), 260–272 (2000). [CrossRef] [PubMed]
  41. S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys.98(1), 011101 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited