OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 7 — Nov. 1, 2011
  • pp: 1185–1191

Color-tunable periodic spatial emission of alloyed CdS1-xSex/ Sn: CdS1-xSex superlattice microwires

Guo Z. Dai, Rui B. Liu, Qiang Wan, Qing L. Zhang, An L. Pan, and Bing S. Zou  »View Author Affiliations

Optical Materials Express, Vol. 1, Issue 7, pp. 1185-1191 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1774 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Semiconductor superlattice micro-/nanowires could greatly increase the versatility and power of modulating electronic or excitonic, and photonic transport, and related optical properties. In this paper we report the synthesis of alloyed semiconductor superlattice microwires (SMs) of CdS1-xSex/Sn: CdS1-xSex based on the mciro-environmental controlled co-evaporation technique. The alloyed SMs can produce color-tunable multimode emission with wavelength from 513 nm to 596 nm by controlling the composition x from 0 to 0.4. In addition, the alloyed segments in the superlattices form many optical microcavities in queue which can lead to the coupled optical cavities which confine both excitons and photons, producing multiple cavity emission modes. This structure may be used in color-tunable nonlinear optical devices, and study light-matter interaction.

© 2011 OSA

OCIS Codes
(160.6000) Materials : Semiconductor materials
(250.5230) Optoelectronics : Photoluminescence
(140.3945) Lasers and laser optics : Microcavities

ToC Category:

Original Manuscript: September 12, 2011
Revised Manuscript: September 30, 2011
Manuscript Accepted: September 30, 2011
Published: October 5, 2011

Guo Z. Dai, Rui B. Liu, Qiang Wan, Qing L. Zhang, An L. Pan, and Bing S. Zou, "Color-tunable periodic spatial emission of alloyed CdS1-xSex/ Sn: CdS1-xSex superlattice microwires," Opt. Mater. Express 1, 1185-1191 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. M. Lieber, “Nanowire superlattices,” Nano Lett.2(2), 81–82 (2002). [CrossRef]
  2. R. D. Robinson, B. Sadtler, D. O. Demchenko, C. K. Erdonmez, L. W. Wang, and A. P. Alivisatos, “Spontaneous superlattice formation in nanorods through partial cation exchange,” Science317(5836), 355–358 (2007). [CrossRef] [PubMed]
  3. X. C. Dou, G. H. Li, and H. C. Lei, “Kinetic versus thermodynamic control over growth process of electrodeposited Bi/BiSb superlattice nanowires,” Nano Lett.8(5), 1286–1290 (2008). [CrossRef] [PubMed]
  4. R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics3(10), 569–576 (2009). [CrossRef]
  5. D. Goldberg, L. I. Deych, A. A. Lisyansky, Z. Shi, V. M. Menon, V. Tokranov, M. Yakimov, and S. Oktyabrsky, “Exciton-lattice polaritons in multiple-quantumwell-based photonic crystals,” Nat. Photonics3(11), 662–666 (2009). [CrossRef]
  6. M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature415(6872), 617–620 (2002). [CrossRef] [PubMed]
  7. Y. Wu, R. Fan, and P. Yang, “Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires,” Nano Lett.2(2), 83–86 (2002). [CrossRef]
  8. M. T. Björk, B. J. Ohlsson, T. A. Sass, I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, “One-dimensional steeplechase for electrons realized,” Nano Lett.2(2), 87–89 (2002). [CrossRef]
  9. R. Solanki, J. Huo, J. L. Freeouf, and B. Miner, “Atomic layer deposition of ZnSe/CdSe superlattice nanowires,” Appl. Phys. Lett.81(20), 3864–3866 (2002). [CrossRef]
  10. G. Z. Dai, B. S. Zou, and Z. L. Wang, “Preparation and periodic emission of superlattice CdS/CdS:SnS2 microwires,” J. Am. Chem. Soc.132(35), 12174–12175 (2010). [CrossRef] [PubMed]
  11. Y. Li, G. Z. Dai, C. J. Zhou, Q. L. Zhang, Q. Wan, L. M. Fu, J. P. Zhang, R. B. Liu, C. B. Cao, A. L. Pan, Y. H. Zhang, and B. S. Zou, “Formation and optical properties of ZnO:ZnFe2O4 superlattice microwires,” Nano Res.3(5), 326–338 (2010). [CrossRef]
  12. H. Zhao, G. Liu, X.-H. Li, G. S. Huang, J. D. Poplawsky, S. T. Penn, V. Dierolf, and N. Tansu, “Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520–525 nm employing graded growth-temperature profile,” Appl. Phys. Lett.95(6), 061104 (2009). [CrossRef]
  13. H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express19(S4), A991–A1007 (2011). [CrossRef] [PubMed]
  14. Y. K. Liu, J. A. Zapien, Y. Y. Shan, C. Y. Geng, C. S. Lee, and S. T. Lee, “Wavelength-controlled lasing in ZnxCd1-xS single-crystal nanoribbons,” Adv. Mater. (Deerfield Beach Fla.)17(11), 1372–1377 (2005). [CrossRef]
  15. A. L. Pan, H. Yang, R. B. Liu, R. C. Yu, B. S. Zou, and Z. L. Wang, “Color-tunable photoluminescence of alloyed CdSxSe1-x nanobelts,” J. Am. Chem. Soc.127(45), 15692–15693 (2005). [CrossRef] [PubMed]
  16. G. Perna, S. Pagliara, V. Capozzi, M. Ambrico, and T. Ligonzo, “Optical characterization of CdSxSe1-x grown on quartz substrate by pulsed laser ablation technique,” Thin Solid Films349(1–2), 220–224 (1999). [CrossRef]
  17. M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics2(12), 741–747 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited