OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 7 — Nov. 1, 2011
  • pp: 1341–1352

Comparison of Nd:phosphate glass, Yb:YAG and Yb:S-FAP laser beamlines for laser inertial fusion energy (LIFE) [Invited]

A. C. Erlandson, S. M. Aceves, A. J. Bayramian, A. L. Bullington, R. J. Beach, C. D. Boley, J. A. Caird, R. J. Deri, A. M. Dunne, D. L. Flowers, M. A. Henesian, K. R. Manes, E. I. Moses, S. I. Rana, K. I. Schaffers, M. L. Spaeth, C. J. Stolz, and S. J. Telford  »View Author Affiliations

Optical Materials Express, Vol. 1, Issue 7, pp. 1341-1352 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1014 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the results of performance modeling of diode-pumped solid state laser beamlines designed for use in Laser Inertial Fusion Energy (LIFE) power plants. Our modeling quantifies the efficiency increases that can be obtained by increasing peak diode power and reducing pump-pulse duration, to reduce decay losses. At the same efficiency, beamlines that use laser slabs of Yb:YAG or Yb:S-FAP require lower diode power than beamlines that use laser slabs of Nd:phosphate glass, since Yb:YAG and Yb:S-FAP have longer storage lifetimes. Beamlines using Yb:YAG attain their highest efficiency at a temperature of about 200K. Beamlines using Nd:phosphate glass or Yb:S-FAP attain high efficiency at or near room temperature.

© 2011 OSA

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(160.3380) Materials : Laser materials

ToC Category:
Laser Materials

Original Manuscript: July 29, 2011
Revised Manuscript: October 10, 2011
Manuscript Accepted: October 15, 2011
Published: October 26, 2011

A. C. Erlandson, S. M. Aceves, A. J. Bayramian, A. L. Bullington, R. J. Beach, C. D. Boley, J. A. Caird, R. J. Deri, A. M. Dunne, D. L. Flowers, M. A. Henesian, K. R. Manes, E. I. Moses, S. I. Rana, K. I. Schaffers, M. L. Spaeth, C. J. Stolz, and S. J. Telford, "Comparison of Nd:phosphate glass, Yb:YAG and Yb:S-FAP laser beamlines for laser inertial fusion energy (LIFE) [Invited]," Opt. Mater. Express 1, 1341-1352 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. I. Moses, “The National Ignition Facility (NIF): A path to fusion energy,” Energy Convers. Manage.49(7), 1795–1802 (2008). [CrossRef]
  2. M. Dunne, E. I. Moses, P. Amendt, T. Anklam, A. Bayramian, E. Bliss, B. Debs, R. Deri, T. D. De La Rubia, B. El-Dasher, J. C. Farmer, D. Flowers, K. J. Kramer, L. Lagin, J. F. Latkowski, J. Lindl, W. Meier, R. Miles, G. A. Moses, S. Reyes, V. Roberts, R. Sawicki, M. Spaeth, and E. Storm, “Timely delivery of laser inertial fusion energy (LIFE),” Fusion Sci. Technol.60, 19–27 (2011).
  3. M. Dunne, N. Alexander, F. Amiranoff, P. Aguer, S. Atzeni, H. Azechi, V. Bagnoud, P. Balcou, J. Badziak, D. Batani, C. Bellei, D. Besnard, R. Bingham, J. Breil, M. Borghesi, S. Borneis, A. Caruso, J. C. Chanteloup, R. J. Clarke, J. L. Collier, J. R. Davies, J.-P. Dufour, P. Estraillier, R. G. Evans, M. Fajardo, R. Fedosejevs, G. Figueria, J. Fils, J. L. Feugeas, M. Galimberti, J.-C. Gauthier, A. Giulietti, L. A. Gizzi, D. Goodin, G. Gregori, S. Gus’kov, L. Hallo, C. Hernandez-Gomez, D. Hoffman, J. Honrubia, S. Jacquemot, M. Key, J. Kilkenny, R. Kingham, M. Koenig, F. Kovacs, K. Krushelnic, C. Labaune, K. Lancaster, C. Leblanc, P. H. Maire, W. Martin, A. McEvoy, P. McKenna, J. T. Mendonça, J. Meyer-ter-Vehn, K. Mima, G. Mourou, S. Moustaizis, Z. Najmudin, P. Nickles, D. Neely, P. Norreys, M. Olazabal, A. Offenberger, N. Papadogianis, J.-P. Perin, J. M. Perlado, J. Ramirez, R. Ramis, Y. Rhee, X. Ribeyre, A. Robinson, K. Rohlena, S. J. Rose, M. Roth, C. Rouyer, C. Rulliere, B. Rus, W. Sandner, A. Schiavi, G. Schurtz, A. Sergeev, M. Sherlock, L. Silva, R. A. Smith, G. Sorasio, C. Strangio, H. Takabe, M. Tatarakis, V. Tikhonchuk, M. Tolley, M. Vaselli, P. Velarde, T. Winstone, K. Witte, J. Wolowski, N. Woolsey, B. Wyborn, M. Zepf, and J. Zhang, “HiPER – technical background and conceptual design report” (HiPER Project, 2011). http://www.hiper-laser.org/docs/tdr/HiPERTDR2.pdf .
  4. T. Norimatsu, Y. Kozaki, N. Miyanaga, J. Kawanaka, H. Azechi, T. Johzaki, and K. Tomabechi, “Conceptual design of laser fusion reactor KOYO-F based on fast ignition scheme,” in Proceedings of the 21st IAEA Conference (International Atomic Energy Agency, 2008), paper FT/P5–39. http://www-pub.iaea.org/MTCD/Meetings/FEC2006/ft_p5-39.pdf .
  5. J. Kawanaka, N. Miyanaga, T. Kawashima, K. Tsubakimoto, Y. Fujimoto, H. Kubomura, S. Matsuoka, T. Ikegawa, Y. Suzuki, N. Tsuchiya, T. Jitsuno, H. Furukawa, T. Kanabe, H. Fujita, K. Yoshida, H. Nakano, J. Nishimae, and M. NakatsukaK. Ueda and K. Tomabechi, “New concept for laser fusion energy driver by using cryogenically-cooled Yb:YAG ceramic,” J. Phys.: Conf. Ser.112, (2008), doi:. [CrossRef]
  6. C. D. Orth, S. A. Payne, and W. F. Krupke, “A diode pumped solid state laser driver for inertial fusion energy,” Nucl. Fusion36(1), 75–116 (1996). [CrossRef]
  7. H. Matsui, T. Eguchi, T. Kanabe, M. Yamanaka, M. Nakatsuka, Y. Izawa, and S. Nakai, “Conceptual design of a laser diode-pumped Nd:glass slab laser driver for inertial fusion energy,” Fusion Eng. Des.44(1-4), 401–405 (1999). [CrossRef]
  8. T. M. Anklam, A. M. Dunne, W. R. Meier, S. Powers, and A. J. Simon, “LIFE: the case for early commercialization of fusion energy,” Fusion Sci. Technol.60, 66–71 (2011).
  9. J. F. Latkowski, R. P. Abbott, S. Aceves, T. M. Anklam, A. W. Cook, J. DeMuth, L. Divol, B. El-Dasher, J. C. Farmer, D. Flowers, M. Fratoni, T. Heltemes, J. Kane, K. J. Kramer, R. Kramer, A. Lafuente, G. A. Loosmore, K. R. Morris, G. A. Moses, B. Olson, C. Pantano, S. Reyes, M. Rhodes, R. Sawicki, H. Scott, M. Tabak, and S. Wilks, “Chamber design for LIFE,” Fusion Sci.Technol.60, 54–60 (2011).
  10. A. Bayramian, S. Aceves, T. Anklam, K. Baker, E. Bliss, C. Boley, A. Bullington, J. Caird, D. Chen, R. Deri, M. Dunne, A. Erlandson, D. Flowers, M. Henesian, J. Latkowski, K. Manes, W. Molander, E. Moses, T. Piggott, S. Powers, S. Rana, S. Rodriguez, R. Sawicki, K. Schaffers, L. Seppala, M. Spaeth, S. Sutton, and S. Telford, “Compact, efficient laser systems required for laser inertial fusion energy,” Fusion Sci. Technol.60, 28–48 (2011).
  11. Data sheet for APG-1 laser glass, (Schott North America, Inc., 2011). http://www.schott.com/advanced_optics/english/download/catalogs.html .
  12. J. H. Campbell, J. S. Hayden, and A. Marker, “High-power solid-state lasers: a laser glass perspective,” Int. J. Appl. Glass Sci.2(1), 3–29 (2011). [CrossRef]
  13. L. D. DeLoach, S. A. Payne, L. K. Smith, W. L. Kway, and W. F. Krupke, “Laser and spectroscopic properties of Sr5(PO4)3F:Yb,” J. Opt. Soc. Am. B11(2), 269–276 (1994). [CrossRef]
  14. A. J. Bayramian, “Development of trivalent ytterbium doped fluorapatites for diode-pumped laser applications,” doctoral thesis, University of California at Davis, UCRL-LR-139215, (June 21, 2000).
  15. A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc.78(4), 1033–1040 (1995). [CrossRef]
  16. A. Ikesue, Y. L. Aung, T. Yoda, S. Nakayama, and T. Kamimura, “Fabrication and laser performance of polycrystal and single crystal Nd:YAG by advanced ceramic processing,” Opt. Mater.29(10), 1289–1294 (2007). [CrossRef]
  17. S. A. Payne, L. D. DeLoach, L. K. Smith, W. L. Kway, J. B. Tassano, W. F. Krupke, B. H. T. Chai, and G. Loutts, “Ytterbium-doped apatite-structure crystals: a new class of laser materials,” J. Appl. Phys.76(1), 497–503 (1994). [CrossRef]
  18. K. Schaffers, A. J. Bayramian, J. A. Menapace, G. T. Rogowski, T. F. Soules, C. A. Stolz, S. B. Sutton, J. B. Tassano, P. A. Thelin, C. A. Ebbers, J. A. Caird, C. P. J. Barty, M. A. Randies, C. Porter, Y. Fei, and B. H. T. Chai, “Advanced material development for inertial fusion energy (IFE),” in Crystal Growth Technology, P. Capper and P. Rudolph, eds. (Wiley-VCH Verlag, 2010).
  19. K. I. Schaffers, J. B. Tassano, A. B. Bayramian, and R. C. Morris, “Growth of Yb: S-FAP [Yb3+: Sr5(PO4)3F] crystals for the mercury laser,” J. Cryst. Growth253(1-4), 297–306 (2003), doi: , http://apex.jsap.jp/link?APEX/4/022703/ . [CrossRef]
  20. J. Akiyama, Y. Sato, and T. Taira, “Laser demonstration of diode-pumped Nd3+-doped fluorapatite anisotropic ceramics,” Appl. Phys. Express4(2), 022703 (2011). [CrossRef]
  21. J. T. Hunt, J. A. Glaze, W. W. Simmons, and P. A. Renard, “Suppression of self-focusing through low-pass spatial filtering and relay imaging,” Appl. Opt.17(13), 2053–2057 (1978). [CrossRef] [PubMed]
  22. C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, “National Ignition Facility laser performance status,” Appl. Opt.46(16), 3276–3303 (2007). [CrossRef] [PubMed]
  23. X. Julien, A. Adolf, E. Bar, V. Beau, E. Bordenave, T. Chiès, R. Courchinoux, J. M. Di-Nicola, C. Féral, P. Gendeau, H. Graillot, C. Grosset-Grange, O. Henry, V. Higonenq, E. Journot, L. Lacampagne, E. Lafond, L. Le Déroff, A. Martinez, L. Patissou, A. Roques, L. Thauvin, and G. Thiell, “LIL laser performance status,” Proc. SPIE7916, 791610 (2011).
  24. A. Bayramian, P. Armstrong, E. Ault, R. Beach, C. Bibeau, J. Caird, R. Campbell, B. Chai, J. Dawson, C. Ebbers, A. Erlandson, Y. Fei, B. Freitas, R. Kent, Z. Liao, T. Ladran, J. Menapace, B. Molander, S. Payne, N. Peterson, M. Randles, K. Schaffers, S. Sutton, J. Tassano, S. Telford, and E. Utterback, “The Mercury Project: A high average power, gas-cooled laser for inertial fusion energy development,” Fusion Sci. Technol.52, 383–387 (2007).
  25. A. Bayramian, B. Deri, S. Fulkerson, R. Lanning, and S. Telford, “Compact, efficient, low-cost diode power conditioning for laser inertial fusion energy,” Proc. SPIE7916, 79160B (2011).
  26. R. Feeler, J. Junghans, and E. Stephens, “Low-cost diode arrays for the LIFE project,” Proc. SPIE7916, 791608 (2011).
  27. P. Crump, H. Wenzel, G. Erbert, P. Ressel, M. Zorn, F. Bugge, S. Einfeldt, R. Staske, U. Zeimer, A. Pietrzak, and G. Trankle, “Passively cooled TM polarized 808-nm laser bars with 70% power conversion at 80-W and 55-W peak power per 100- µm stripe width,” IEEE Photon. Technol. Lett.20(16), 1378–1380 (2008). [CrossRef]
  28. P. Crump, S. Patterson, J. Wang, W. Dong, M. Grimshaw, S. Zhang, S. Elim, M. Bougher, J. Patterson, S. Das, D. Wise, M. DeFranza, J. Bell, J. Farmer, M. DeVito, and R. Martinsen, “Diode laser bars deliver > 400-W peak CW power from 800-nm to 980-nm,” Proc. SPIE6397, 639706 (2006). [CrossRef]
  29. M. Kanskar, T. Earles, T. J. Goodnough, E. Stiers, D. Botez, and L. J. Mawst, “73% CW power conversion efficiency at 50W from 970nm diode laser bars,” Electron. Lett.41(5), 245–247 (2005). [CrossRef]
  30. P. Crump, J. Wang, S. Patterson, D. Wise, A. Basauri, M. DeFranza, S. Elim, W. Dong, S. Zhang, M. Bougher, J. Patterson, S. Das, M. Grimshaw, J. Farmer, M. DeVito, and R. Martinsen, “Diode laser efficiency increases enable > 400-W peak power from 1-cm bars,” Proc. SPIE6104, 610409 (2006). [CrossRef]
  31. Temperature-dependent absorption spectra of Yb:YAG were provided by J. Kawanaka of the Institute of Laser Engineering, Osaka University, Osaka, Japan.
  32. J. Dong, M. Bass, Y. Mao, P. Deng, and F. Gan, “Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet,” J. Opt. Soc. Am. B20(9), 1975–1979 (2003). [CrossRef]
  33. L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys.34(8), 2346–2349 (1963). [CrossRef]
  34. A. E. Siegman, Lasers (University Science Books, 1986), Chap. 8.
  35. R. A. Sacks, M. A. Henesian, S. W. Haney, and J. B. Trenholme, “The PROP92 Fourier beam propagation code,” in ICF Annual Report, UCRL-LR-105821–96 (Lawrence Livermore National Laboratory, Livermore, CA, 1996), pp. 207–213.
  36. O. Morice, “Miro: Complete modeling and software for pulse amplification and propagation in high-power laser systems,” Opt. Eng.42(6), 1530–1541 (2003). [CrossRef]
  37. W. M. Kays and A. L. London, Compact Heat Exchangers, 3rd ed. (Krieger Publishing, 1998).
  38. K. A. Manske, D. T. Reindl, and S. A. Klein, “Evaporative condenser control in industrial refrigeration systems,” Int. J. Refrig.24, 676–691 (2001). [CrossRef]
  39. J. L. Emmett, W. F. Krupke, and W. R. Sooy, The Potential of High-Average-Power Solid-State Lasers, UCRL-53571 (Lawrence Livermore National Laboratory, Livermore, CA, 1984).
  40. A. C. Erlandson, G. F. Albrecht, and S. E. Stokowski, “Model predicting the temperature dependence of the gain coefficient and the extractable stored energy density in Nd:phosphate glass lasers,” J. Opt. Soc. Am. B9(2), 214–222 (1992). [CrossRef]
  41. J. Dong, M. Bass, and C. Walters, “Temperature-dependent stimulated-emission cross section and concentration quenching in Nd3+-doped phosphate glasses,” J. Opt. Soc. Am. B21(2), 454–457 (2004). [CrossRef]
  42. D. M. Pennington, D. Milam, and D. Eimerl, “Gain saturation studies in LG-750 and LG-770 amplifier glass,” Proc. SPIE3047, 630–642 (1997).
  43. W. E. Martin, D. Milam, and J. B. Trenholme, Laser Program Annual Report-79, UCRL-50021–79, (Lawrence Livermore National Laboratory, Livermore, CA, 1980), pp. 2.160–2.170.
  44. W. E. Martin and D. Milam, “Direct measurement of gain recovery in a saturated Nd-glass amplifier,” Appl. Phys. Lett.32(12), 816–818 (1978). [CrossRef]
  45. W. E. Martin and D. Milam, “Gain saturation in Nd:doped laser materials,” IEEE J. Quantum Electron.18(7), 1155–1163 (1982). [CrossRef]
  46. D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.11(3), 587–599 (2005). [CrossRef]
  47. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007). [CrossRef]
  48. Y. Sato, J. Akiyama, and T. Taira, “Effects of rare-earth doping on thermal conductivity in Y3Al5O12 crystals,” Opt. Mater.31(5), 720–724 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited