OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 1, Iss. 8 — Dec. 1, 2011
  • pp: 1399–1408

Time-resolved axial-view of the dielectric breakdown under tight focusing in glass

Yoshio Hayasaki, Keisuke Iwata, Satoshi Hasegawa, Akihiro Takita, and Saulius Juodkazis  »View Author Affiliations


Optical Materials Express, Vol. 1, Issue 8, pp. 1399-1408 (2011)
http://dx.doi.org/10.1364/OME.1.001399


View Full Text Article

Enhanced HTML    Acrobat PDF (1671 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present time-resolved studies of the dielectric breakdown using tightly focused femtosecond (fs) laser pulses in glass. Axial evolution of the breakdown and material modifications have been retrieved over the time span from 0 to 1 ns with a 50 fs resolution and ∼ 1 μm spatial resolution using interferometric pump-probe technique. It is shown that even at pulse power slightly above critical Pcr ≃ 1 MW/pulse, the filamentation was limited at tight focusing and the central focal region with resolidified glass was localised axially within ∼ 10 μm; it can be used for the waveguide recording. Mechanisms of light-matter interaction at tight focusing and application potential are discussed. The electron-ion scattering time, τe–i ≃ 1.1 fs, for the glass at electron concentration ne ≃ (4–5)×1020 cm−3 was determined within Drude approximation.

© 2011 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(350.3850) Other areas of optics : Materials processing
(160.1245) Materials : Artificially engineered materials

ToC Category:
Laser Materials Processing

History
Original Manuscript: August 19, 2011
Revised Manuscript: October 3, 2011
Manuscript Accepted: October 9, 2011
Published: November 2, 2011

Citation
Yoshio Hayasaki, Keisuke Iwata, Satoshi Hasegawa, Akihiro Takita, and Saulius Juodkazis, "Time-resolved axial-view of the dielectric breakdown under tight focusing in glass," Opt. Mater. Express 1, 1399-1408 (2011)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-1-8-1399


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Hayasaki, M. Isaka, A. Takita, and S. Juodkazis, “Time-resolved interferometry of femtosecond-laserinduced processes under tight focusing and close-to optical breakdown inside borosilicate glass,” Opt. Express19, 5725–5734 (2011). [CrossRef] [PubMed]
  2. Q. Sun, H. Jiang, Y. Liu, Z. Wu, H. Yang, and Q. Gong, “Measurement of the collision time of dense electronic plasma induced by a femtosecond laser in fussed silica,” Opt. Lett.30, 320–322 (2005). [CrossRef] [PubMed]
  3. A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum.82, 033703 (2011). [CrossRef] [PubMed]
  4. M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse,” J. Appl. Phys.109, 023503 (2011). [CrossRef]
  5. S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, “Structural changes in femtosecond laser modified regions inside fused silica,” J. Opt.12, 124007 (2010). [CrossRef]
  6. A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. Rode, and S. Juodkazis, “Evidence of super-dense aluminum synthesized by ultra-fast micro-explosion,” Nat. Commun.2, 445 (2011). [CrossRef] [PubMed]
  7. S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A77, 109–111 (2003). [CrossRef]
  8. G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. D. Silvestri, “Femtosecond micromachining of symmetric waveguides at 1.5μm by astigmatic beam focusing,” Opt. Lett.27, 1938–1940 (2002). [CrossRef]
  9. M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev.3, 535–544 (2009). [CrossRef]
  10. Y. Bellouard, M. Dugan, A. A. Said, and P. Bado, “Thermal conductivity contrast measurement of fused silica exposed to low-energy femtosecond laser pulses,” Appl. Phys. Lett.89, 161911 (2006). [CrossRef]
  11. A. Benayas, D. Jaque, B. McMillen, and K. P. Chen, “High repetition rate UV ultrafast laser inscription of buried channel waveguides in sapphire: Fabrication and fluorescence imaging via ruby R lines,” Opt. Express17, 10076–10081 (2009). [CrossRef] [PubMed]
  12. G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, “Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass,” Opt. Express17, 9515–9525 (2009). [CrossRef] [PubMed]
  13. S. M. Eaton, H. Zhang, M. L. Ng, J. Z. Li, W. J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express16, 9443–9458 (2008). [CrossRef] [PubMed]
  14. W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. R. de la Cruz, H. Fernandez, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett.93, 121109 (2008). [CrossRef]
  15. L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express1, 605–613 (2011). [CrossRef]
  16. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21, 1729–1731 (1996). [CrossRef] [PubMed]
  17. C. E. Bell and J. A. Landt, “Laser-induced high-pressure shock waves in water,” Appl. Phys. Lett.10, 46–48 (1967). [CrossRef]
  18. A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am.100, 148–165 (1996). [CrossRef]
  19. A. B. Schaffer, N. Nishimura, E. N. Glezer, A. M.-T. Kim, and E. Mazur, “Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express10, 196–203 (2002). [PubMed]
  20. E. Abraham, K. Minoshima, and H. Matsumoto, “Femtosecond laser-induced breakdown in water: time-resolved shadow imaging and two-color interferometric imaging,” Opt. Commun.176, 441–452 (2000). [CrossRef]
  21. X. Zeng, X. Mao, S. S. Mao, A.-B. Wen, R. Greif, and E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett.88, 061502 (2006). [CrossRef]
  22. V. V. Temnov, K. S.- Tinten, P. Zhou, and D. von der Linde, “Ultrafast imaging interferometry at femtosecond-laser-excited surfaces,” J. Opt. Soc. Am. B23, 1954–1964 (2006). [CrossRef]
  23. A. Takita and Y. Hayasaki, “Interference measurement of superposition of laser-induced shock waves in water,” Jpn. J. Appl. Phys.48, 09LD04 (2009). [CrossRef]
  24. T. Balčiunas, A. Melninkaitis, G. Tamosauskas, and V. Sirutkaitis, “Time-resolved off-axis digital holography for characterization of ultrafast phenomena in water,” Opt. Lett.33, 58–60 (2008). [CrossRef]
  25. A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A76, 257–260 (2003). [CrossRef]
  26. E. Gaižauskas, E. Vanagas, V. Jarutis, S. Juodkazis, V. Mizeikis, and H. Misawa, “Discrete damage traces from filamentation of Bessel-Gauss pulses,” Opt. Lett.31, 80–82 (2006). [CrossRef]
  27. E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation,” Phys. Rev. B73, 214101 (2006). [CrossRef]
  28. L. Sudrie L, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun.191, 333–339 (2001). [CrossRef]
  29. S. Juodkazis, H. Misawa, O. A. Louchev, and K. Kitamura, “Femtosecond laser ablation of chalcogenide glass: explosive formation of nano-fibers against thermo-capillary growth of micro-spheres,” Nanotechnology17, 4802–4805 (2006). [CrossRef]
  30. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multi-megabar pressures,” Phys. Rev. Lett.96, 166101 (2006). [CrossRef] [PubMed]
  31. S. Juodkazis, H. Misawa, T. Hashimoto, E. Gamaly, and B. Luther-Davies, “Laser-induced micro-explosion confined in a bulk of silica: formation of nano-void,” Appl. Phys. Lett.88, 201909 (2006). [CrossRef]
  32. T. Hashimoto, S. Juodkazis, and H. Misawa, “Void formation in glass,” New J. Phys.9, 253 (2007). [CrossRef]
  33. S. Juodkazis, N. Murazawa, H. Wakatsuki, and H. Misawa, “Laser irradiation induced disintegration of a bubble in a glass melt,” Appl. Phys. A87, 41–45 (2007). [CrossRef]
  34. M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express18, 10209–10221 (2010). [CrossRef] [PubMed]
  35. M. Malinauskas, P. Danilevičius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express19, 5602–5610 (2011). [CrossRef] [PubMed]
  36. E. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. Rode, and W. Krolokowski, “Modification of refractive index by a single fs-pulse confined inside a bulk of a photo-refractive crystal,” Phys. Rev. B81, 054113 (2010). [CrossRef]
  37. S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys.106, 051101 (2009). [CrossRef]
  38. L. Hallo, C. Mézel, A. Bourgeade, D. Hébert, E. G. Gamaly, and S. Juodkazis, “Laser-matter interaction in transparent materials: confined micro-explosion and jet formation,” in Extreme Photonics and Applications, T. J. Hall, S. V. Gaponenko, and S. A. Paredes, eds. (SpringerNetherlands, 2009), pp. 121–146.
  39. Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of spatial light modulator,” Appl. Phys. Lett.87, 031101 (2005). [CrossRef]
  40. L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, and S. Juodkazis, “Laser-induced structural changes in pure GeO2 glasses,” J. Non-Crystal. Sol.357, 2637–2640 (2011). [CrossRef]
  41. K. Hatanaka, T. Ida, H. Ono, S.-I. Matsushima, H. Fukumura, S. Juodkazis, and H. Misawa, “Chirp effect in hard X-ray generation from liquid target when irradiated by femtosecond pulses,” Opt. Express16, 12650–12657 (2008). [PubMed]
  42. D. M. Krol, “Femtosecond laser modification of glass,” J. Non-Cryst. Solids354, 416–424 (2009). [CrossRef]
  43. S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater.1, 217–224 (2002). [CrossRef]
  44. C. W. Carr, J. D. Bude, and P. DeMange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B82, 184304 (2010).
  45. S. G. Demos, M. Staggs, and M. R. Kozlowski, “Investigation of processes leading to damage growth in optical materials for large-aperture lasers,” Appl. Opt.41, 3628–3633 (2002). [CrossRef] [PubMed]
  46. S. D. McGrane, A. Grieco, K. J. Ramos, D. E. Hooks, and D. S. Moore, “Femtosecond micromachining of internal voids in high explosive crystals for studies of hot spot initiation,” J. Appl. Phys.105, 073505 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited