OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 10 — Oct. 1, 2012
  • pp: 1384–1390

Plasmon hybridization in stacked metallic nanocups

Larissa Wollet, Bettina Frank, Martin Schäferling, Martin Mesch, Sven Hein, and Harald Giessen  »View Author Affiliations

Optical Materials Express, Vol. 2, Issue 10, pp. 1384-1390 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2782 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate hybridized electric and magnetic plasmon modes in stacked nanocups. To elucidate the coupling mechanism we demonstrate the analogy between split-ring-resonators and nanocups in the case of dipolar excitation and compare the behavior of stacked nanocups to stacked split-ring-resonators. The interplay of electric coupling with the symmetric and antisymmetric coupling of magnetic moments in effective split-ring-resonator resonances in the nanocups leads to experimentally observed hybridized modes in the coupled nanocup system. Our stacked nanocups are easily manufacturable at low cost, they cover a large-area, and can serve as SERS or SEIRA substrates. They might also serve as novel plasmonic nanoantennas, as templates for nonlinear plasmonics, and as stacked meander surfaces for metamaterial-assisted imaging.

© 2012 OSA

OCIS Codes
(160.3918) Materials : Metamaterials
(220.4241) Optical design and fabrication : Nanostructure fabrication
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: July 31, 2012
Revised Manuscript: August 30, 2012
Manuscript Accepted: August 31, 2012
Published: September 10, 2012

Larissa Wollet, Bettina Frank, Martin Schäferling, Martin Mesch, Sven Hein, and Harald Giessen, "Plasmon hybridization in stacked metallic nanocups," Opt. Mater. Express 2, 1384-1390 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: insight into multicomponent nanoparticle growth,” Phys. Rev. Lett.78, 4217–4220 (1997). [CrossRef]
  2. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett.288, 243–247 (1998). [CrossRef]
  3. S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: nanoparticles with built-in Fano resonances,” Nano Lett.10, 2694–2701 (2010). [CrossRef]
  4. M. Cortie and M. Ford, “A plasmon-induced current loop in gold semi-shells,” Nanotechnology18, 235704 (2007). [CrossRef]
  5. J. Ye, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Symmetry breaking induced optical properties of gold open shell nanostructures,” Opt. Express17, 23765–23771 (2009). [CrossRef]
  6. J. Ye, P. Van Dorpe, W. Van Roy, G. Borghs, and G. Maes, “Fabrication, characterization, and optical properties of gold nanobowl submonolayer structures,” Langmuir25, 1822–1827 (2009). [CrossRef]
  7. J. Ye, N. Verellen, W. Van Roy, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Plasmonic modes of metallic semishells in a polymer film,” ACS Nano4, 1457–1464 (2010). [CrossRef]
  8. N. A. Mirin and N. J. Halas, “Light-bending nanoparticles,” Nano Lett.9, 1255–1259 (2009). [CrossRef]
  9. N. S. King, Y. Li, C. Ayala-Orozco, T. Brannan, P. Nordlander, and N. J. Halas, “Angle- and spectral-dependent light scattering from plasmonic nanocups,” ACS Nano5, 7254–7262 (2011). [CrossRef]
  10. P. Van Dorpe and J. Ye, “Semishells: versatile plasmonic nanoparticles,” ACS Nano5, 6774–6778 (2011). [CrossRef]
  11. F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101, 157403 (2008). [CrossRef]
  12. C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. Ali Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater.11, 69–75 (2012). [CrossRef]
  13. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA100, 13549–13554 (2003). [CrossRef]
  14. Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett.11, 5519–5523 (2011). [CrossRef]
  15. Y. Pu, R. Grange, C. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett.104, 207402 (2010). [CrossRef]
  16. A. Kosiorek, W. Kandulski, H. Glaczynska, and M. Giersig, “Fabrication of nanoscale rings, dots, and rods by combining shadow nanosphere lithography and annealed polystyrene nanosphere masks,” Small1, 439–444 (2005). [CrossRef]
  17. S. Yang, S. G. Jang, D. Choi, S. Kim, and H. K. Yu, “Nanomachining by colloidal lithography,” Small2, 458–475 (2006). [CrossRef]
  18. M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography,” Small5, 400–406 (2009). [CrossRef]
  19. J. Zhao, B. Frank, S. Burger, and H. Giessen, “Large-area high-quality plasmonic oligomers fabricated by angle-controlled colloidal nanolithography,” ACS Nano5, 9009–9016 (2011). [CrossRef]
  20. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna,” Opt. Express16, 10858–10866 (2008). [CrossRef]
  21. T. Pakizeh and M. Käll, “Unidirectional ultracompact optical nanoantennas,” Nano Lett.9, 2343–2349 (2009). [CrossRef]
  22. D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat. Commun.2, 267 (2011). [CrossRef]
  23. R. M. Cole, J. J. Baumberg, F. J. Garcia de Abajo, S. Mahajan, M. Abdelsalam, and P. N. Bartlett, “Understanding plasmons in nanoscale voids,” Nano Lett.7, 2094–2100 (2007). [CrossRef]
  24. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302, 419–422 (2003). [CrossRef]
  25. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972). [CrossRef]
  26. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech.47, 2075–2084 (1999). [CrossRef]
  27. C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express14, 8827–8836 (2006). [CrossRef]
  28. S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron.12, 1097–1105 (2006). [CrossRef]
  29. N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics3, 157–162 (2009). [CrossRef]
  30. N. Liu and H. Giessen, “Coupling effects in optical metamaterials,” Angew. Chem. Int. Ed.49, 9838–9852 (2010). [CrossRef]
  31. H. Guo, N. Liu, L. Fu, T. P. Meyrath, T. Zentgraf, H. Schweizer, and H. Giessen, “Resonance hybridization in double split-ring resonator metamaterials,” Opt. Express15, 12095–12101 (2007). [CrossRef]
  32. N. J. Halas, S. Lal, W. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev.111, 3913–3961 (2011). [CrossRef]
  33. Ph. Schau, K. Frenner, L. Fu, H. Schweizer, H. Giessen, and W. Osten, “Design of highly transmissive metallic meander stacks with different grating periodicities for subwavelength-imaging applications,” Opt. Express19, 3627–3636 (2011). [CrossRef]
  34. L. Fu, P. Schau, K. Frenner, H. Schweizer, J. Zhao, B. Frank, L. Wollet, P. Gaiser, B. Gompf, H. Giessen, and W. Osten, “Experimental demonstration of dispersion engineering through mode interactions in plasmonic microcavities,” Proc. SPIE8423, 84232I (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited