OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 11 — Nov. 1, 2012
  • pp: 1478–1489

Photosensitivity of optical fibers with extremely high germanium concentration

Oleg I. Medvedkov, Sergei A. Vasiliev, Pavel I. Gnusin, and Evgeny M. Dianov  »View Author Affiliations


Optical Materials Express, Vol. 2, Issue 11, pp. 1478-1489 (2012)
http://dx.doi.org/10.1364/OME.2.001478


View Full Text Article

Enhanced HTML    Acrobat PDF (1693 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Writing and thermal annealing of fiber Bragg gratings (FBGs) in an optical fiber containing 75 mol.% GeO2 in the core have been studied by analyzing the first three diffraction orders of the FBGs. Double oscillations of the grating reflectivity has been observed during the FBG formation in an H2-loaded fiber, and the corresponding three grating types revealed have been labeled as type I(H2), type IIa(H2)-, and type IIa(H2)+. The results obtained have shown that the negative index change related to the type IIa photosensitivity cannot be described by the accumulated UV-dose only, but strongly depends on the UV-radiation intensity for both pristine and H2-loaded fibers, unlike the type I and type I(H2) photosensitivities.

© 2012 OSA

OCIS Codes
(060.2400) Fiber optics and optical communications : Fiber properties
(060.3738) Fiber optics and optical communications : Fiber Bragg gratings, photosensitivity

ToC Category:
Materials for Fiber Optics

History
Original Manuscript: August 3, 2012
Revised Manuscript: August 20, 2012
Manuscript Accepted: August 20, 2012
Published: October 1, 2012

Virtual Issues
Specialty Optical Fibers (2012) Optical Materials Express

Citation
Oleg I. Medvedkov, Sergei A. Vasiliev, Pavel I. Gnusin, and Evgeny M. Dianov, "Photosensitivity of optical fibers with extremely high germanium concentration," Opt. Mater. Express 2, 1478-1489 (2012)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-2-11-1478


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett.29(13), 1191–1193 (1993). [CrossRef]
  2. M. Lancry, B. Poumellec, P. Niay, M. Douay, P. Cordier, and C. Depecker, “VUV and IR absorption spectra induced in H2-loaded and UV hyper-sensitized standard germanosilicate preform plates through exposure to ArF laser light,” J. Non-Cryst. Solids351(52-54), 3773–3783 (2005). [CrossRef]
  3. B. Poumellec, P. Guenot, I. Riant, P. Sansonetti, P. Niay, P. Bernage, and J. F. Bayon, “UV induced densification during Bragg grating inscription in Ge:SiO2 preforms,” Opt. Mater.4, 401–409 (1995).
  4. A. Hidayat, Q. Wang, P. Niay, M. Douay, B. Poumellec, F. Kherbouche, and I. Riant, “Temperature-induced reversible changes in the spectral characteristics of fiber Bragg gratings,” Appl. Opt.40(16), 2632–2642 (2001). [CrossRef] [PubMed]
  5. P. I. Gnusin, S. A. Vasiliev, O. I. Medvedkov, and E. M. Dianov, “Reversible changes in the reflectivity of different types of fibre Bragg gratings,” Quantum Electron.40(10), 879–886 (2010). [CrossRef]
  6. N. H. Ky, H. G. Limberger, R. P. Salathe, F. Cochet, and L. Dong, “UV-irradiation induced stress and index changes during the growth of type-I and type-IIA fiber gratings,” Opt. Commun.225(4-6), 313–318 (2003). [CrossRef]
  7. S. Pal, “Characterization of thermal (in)stability and temperature-dependence of type-I and type-IIA Bragg gratings written in B–Ge co-doped fiber,” Opt. Commun.262(1), 68–76 (2006). [CrossRef]
  8. X. Shu, D. Zhao, L. Zhang, and I. Bennion, “Use of dual-grating sensors formed by different types of fiber Bragg gratings for simultaneous temperature and strain measurements,” Appl. Opt.43(10), 2006–2012 (2004). [CrossRef] [PubMed]
  9. J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev.2(4), 275–289 (2008). [CrossRef]
  10. H. Poignant, J. F. Bayon, E. Delevaque, M. Monerie, J. L. Mellot, D. Grot, P. Niay, P. Bemage, and M. Douay, “Influence of H2 loading on the kinetics of Type IIA fibre Bragg grating photoinscription,” in IEE Colloquium on Optical Fibre Gratings (London, UK, 1997), pp. 2/1-2/7.
  11. O. I. Medvedkov, S. A. Vasiliev, P. I. Gnusin, and E. M. Dianov, “Three Bragg grating types in hydrogen-loaded heavily germanium- doped fibers,” in Bragg gratings, Photosensitivity and Poling in Glass Waveguides conference, Technical Digest (CD) (Optical Society of America, 2012), paper BM4D.2.
  12. V. M. Mashinsky, V. B. Neustruev, V. V. Dvoyrin, S. A. Vasiliev, O. I. Medvedkov, I. A. Bufetov, A. V. Shubin, E. M. Dianov, A. N. Guryanov, V. F. Khopin, and M. Yu. Salgansky, “Germania-glass-core silica-glass-cladding modified chemical-vapor deposition optical fibers: optical losses, photorefractivity, and Raman amplification,” Opt. Lett.29(22), 2596–2598 (2004). [CrossRef] [PubMed]
  13. C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Impact of index change saturation on the growth behavior of higher-order type I ultrafast induced fiber Bragg gratings,” J. Opt. Soc. Am. B25(5), 877–883 (2008). [CrossRef]
  14. S. A. Vasiliev, O. I. Medvedkov, I. G. Korolev, A. S. Bozhkov, A. S. Kurkov, and E. M. Dianov, “Fibre gratings and their application,” Quantum Electron.35(12), 1085–1103 (2005). [CrossRef]
  15. W. Primak, “Large temperature range annealing,” J. Appl. Phys.31(9), 1524–1533 (1960). [CrossRef]
  16. J. Rathje, M. Kristensen, and J. E. Pedersen, “Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings,” J. Appl. Phys.88(2), 1050–1055 (2000). [CrossRef]
  17. A. S. Bozhkov, S. A. Vasiliev, O. I. Medvedkov, M. V. Grekov, and I. G. Korolev, “A setup for investigating induced refractive index change in optical fibers at high temperatures,” Instrum. Exp. Tech.48(4), 491–497 (2005). [CrossRef]
  18. R. Kashyap, Fiber Bragg Gratings, P.L. Kelly, I. Kaminow, and G. Agrawal, eds. (Academic Press, 1999).
  19. W. X. Xie, P. Niay, P. Bernage, M. Douay, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, “Experimental evidence of two types of photorefractive effects occurring during photoinscriptions of Bragg gratings within germanosilicate fibres,” Opt. Commun.104(1-3), 185–195 (1993). [CrossRef]
  20. L. Dong, W. F. Liu, and L. Reekie, “Negative-index gratings formed by a 193-nm excimer laser,” Opt. Lett.21(24), 2032–2034 (1996). [CrossRef] [PubMed]
  21. Y. Liu, J. A. R. Williams, L. Zhang, and I. Bennion, “Abnormal spectral evolution of fiber Bragg gratings in hydrogenated fibers,” Opt. Lett.27(8), 586–588 (2002). [CrossRef] [PubMed]
  22. A. G. Simpson, L. Zhang, K. Zhou, and I. Bennion, “Abnormal photosensitivity effects and the formation of type IA FBGs,” in Bragg gratings, Photosensitivity and Poling in Glass Waveguides conference, Technical Digest (Optical Society of America, 2003), paper MD-32.
  23. K. Kalli, A. G. Simpson, K. Zhou, L. Zhang, D. Birkin, T. Ellingham, and I. Bennion, “Spectral modification of type IA fibre Bragg gratings by high-powernear-infrared lasers,” Meas. Sci. Technol.17(5), 968–974 (2006). [CrossRef]
  24. S. A. Vasiliev, O. I. Medvedkov, V. G. Plotnichenko, E. M. Dianov, and A. O. Rybaltovsky, “Increased solubility of molecular hydrogen in UV-exposed germanosilicate fibers,” Opt. Lett.31(1), 11–13 (2006). [CrossRef] [PubMed]
  25. H. R. Sørensen, H. J. Deyerl, and M. Kristensen, “Thermal stability of UV-written gratings in low- and high Ge content fibers,” in Bragg gratings, Photosensitivity and Poling in Glass Waveguides conference, Technical Digest (Optical Society of America, 2003), paper MD-30.
  26. C. Dalle, P. Cordier, C. Depecker, P. Niay, P. Bernage, and M. Douay, “Growth kinetics and thermal annealing of UV-induced H-bearing species in hydrogen loaded germanosilicate fibre performs,” J. Non-Cryst. Solids260(1-2), 83–98 (1999). [CrossRef]
  27. K. M. Davis and M. Tomozawa, “An infrared spectroscopic study of water-related species in silica glasses,” J. Non-Cryst. Solids201(3), 177–198 (1996). [CrossRef]
  28. B. I. Greene, D. M. Krol, S. G. Kosinski, P. J. Lemaire, and P. N. Saeta, “Thermal and photo-initiated reactions of H2 with germanosilicate optical fibers,” J. Non-Cryst. Solids168(1-2), 195–199 (1994). [CrossRef]
  29. P. I. Gnusin, S. A. Vasiliev, O. I. Medvedkov, and E. M. Dianov, “Temperature-resolved spectroscopy of UV-induced absorption in H2-loaded germanosilicate fiber,” in Bragg gratings, Photosensitivity and Poling in Glass Waveguides conference, Technical Digest (CD) (Optical Society of America, 2012), paper BM4D.3.
  30. M. Lancry, P. Niay, M. Douay, C. Depecker, P. Cordier, and B. Poumellec, “Isochronal annealing of BG written either in H2-loaded, UV hypersensitized or in OH-flooded standard telecommunication fibers using ArF laser,” J. Lightwave Technol.24(3), 1376–1387 (2006). [CrossRef]
  31. V. Grubsky, D. S. Starodubov, and J. Feinberg, “Photochemical reaction of hydrogen with germanosilicate glass initiated by 3.4 5.4-eV ultraviolet light,” Opt. Lett.24(11), 729–731 (1999). [CrossRef] [PubMed]
  32. S. Bandyopadhyay, J. Canning, P. Biswas, M. Stevenson, and K. Dasgupta, “A study of regenerated gratings produced in germanosilicate fibers by high temperature annealing,” Opt. Express19(2), 1198–1206 (2011). [CrossRef] [PubMed]
  33. S. A. Vasiliev, O. I. Medvedkov, A. S. Bozhkov, and E. M. Dianov, “Annealing of UV-induced fiber gratings written in Ge-doped fibers: investigation of dose and strain effects,” in Bragg gratings, Photosensitivity and Poling in Glass Waveguides conference, Technical Digest (Optical Society of America, 2003), paper MD-31.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited