OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 11 — Nov. 1, 2012
  • pp: 1520–1528

Spectral engineering of optical fiber preforms through active nanoparticle doping

T. Lindstrom, E. Garber, D. Edmonson, T. Hawkins, Y. Chen, G. Turri, M. Bass, and J. Ballato  »View Author Affiliations

Optical Materials Express, Vol. 2, Issue 11, pp. 1520-1528 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1356 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Europium doped alkaline earth fluoride [Eu:AEF2 (AE = Ca, Sr, Ba)] nanoparticles were synthesized and systematically incorporated into the core of modified chemical vapor deposition (MCVD)-derived silica-based preforms by solution doping. The resulting preforms were examined to determine the impact of the nanoparticles chemistry on the spectroscopic behavior of the glass. The dominant existence of Eu3+ was demonstrated in all preforms, which is in contrast to conventional solution doped preforms employing dissolved europium salts where Eu2+ is primarily observed. Raman spectroscopy and fluorescence lifetime measurements indicated that the nanoparticles composition is effective in controlling, at a local chemical and structural level, the spectroscopic properties of active dopants in optical fiber glasses. Further, there is a systematic and marked increase in radiative lifetime, τ, of the Eu3+ emission that follows the cationic mass; τCa < τSr < τBa with the BaF2-derived sample yielding a 37% lengthening of the lifetime over the CaF2-derived one. Such nanoscale control of what otherwise is silica glass could be useful for realizing property-enhanced and tailored spectroscopic performance from otherwise “standard” materials, e.g., vapor-derived silica, in next generation optical fibers.

© 2012 OSA

OCIS Codes
(060.2290) Fiber optics and optical communications : Fiber materials
(060.2310) Fiber optics and optical communications : Fiber optics
(160.2290) Materials : Fiber materials

ToC Category:
Materials for Fiber Optics

Original Manuscript: August 23, 2012
Revised Manuscript: September 24, 2012
Manuscript Accepted: September 26, 2012
Published: October 1, 2012

Virtual Issues
Specialty Optical Fibers (2012) Optical Materials Express

T. Lindstrom, E. Garber, D. Edmonson, T. Hawkins, Y. Chen, G. Turri, M. Bass, and J. Ballato, "Spectral engineering of optical fiber preforms through active nanoparticle doping," Opt. Mater. Express 2, 1520-1528 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Richardson, J. Nilsson, and A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B27(11), B63–B92 (2010). [CrossRef]
  2. A. Bjarklev, Optical Fiber Amplifiers: Design and System Applications (Artech House, 1993).
  3. S. Poole, D. Payne, and M. Fermann, “Fabrication of low-loss optical fibres containing rare earth ions,” Electron. Lett.21(17), 737–738 (1985). [CrossRef]
  4. J. Townsend, S. Poole, and D. Payne, “Solution-doping technique for fabrication of rare earth doped optical fibres,” Electron. Lett.23(7), 329–331 (1987). [CrossRef]
  5. V. Khopin, A. Umnikov, A. Gur’yanov, M. Bubnov, A. Senatorov, and E. Dianov, “Doping of optical fiber preforms via porous silica layer infiltration with salt solutions,” Inorg. Mater.41(3), 303–307 (2005). [CrossRef]
  6. A. Dhar, A. Pal, M. Ch. Paul, P. Ray, H. S. Maiti, and R. Sen, “The mechanism of rare earth incorporation in solution doping process,” Opt. Express16(17), 12835–12846 (2008). [CrossRef] [PubMed]
  7. M. Digonnet, ed., Rare-Earth-Doped Fiber Lasers and Amplifiers (Marcel Dekker, Inc., 2001).
  8. S. Tammela, M. Soderlund, J. Koponen, V. Philippov, and P. Stenius, “The potential of direct nanoparticle deposition for the next generation of optical fibers,” Proc. SPIE6116, 61160G (2006). [CrossRef]
  9. W. Blanc, B. Dussardier, G. Monnom, R. Peretti, A. M. Jurdyc, B. Jacquier, M. Foret, and A. Roberts, “Erbium emission properties in nanostructured fibers,” Appl. Opt.48(31), G119–G124 (2009). [CrossRef] [PubMed]
  10. W. Blanc, D. Dussardier, and M. Paul, “Er-doped oxide nanoparticles in silica-based optical fibers,” Phys. Chem. GlassesA50, 79–81 (2009).
  11. B. Dussardier, W. Blanc, and G. Monnom, “Luminescent ions in silica-based optical fibers,” Fiber Integr. Opt.27(6), 484–504 (2008). [CrossRef]
  12. A. Céreyon, A. Jurdyc, V. Martinez, E. Burov, A. Pastouret, and B. Champagnon, “Raman amplification in nanoparticles doped glasses,” J. Non-Cryst. Solids354(29), 3458–3461 (2008). [CrossRef]
  13. O. Podrazky, I. Kasik, M. Pospisilova, and V. Matejec, “Use of nanoparticles for preparation of rare-earth doped silica fibers,” Phys. Status Solidi C6(10), 2228–2230 (2009). [CrossRef]
  14. D. Boivin, T. Föhn, E. Burov, A. Pastouret, C. Gonnet, O. Cavani, C. Collet, and S. Lempereur, “Quenching investigation on new erbium doped fibers using MCVD nanoparticle doping process,” Proc. SPIE7580, 75802B (2010). [CrossRef]
  15. C. Kucera, B. Kokuoz, D. Edmondson, D. Griese, M. Miller, A. James, W. Baker, and J. Ballato, “Designer emission spectra through tailored energy transfer in nanoparticle-doped silica preforms,” Opt. Lett.34(15), 2339–2341 (2009). [CrossRef] [PubMed]
  16. K. Oh, T. Morse, L. Reinhart, A. Kilian, and W. Risen., “Spectroscopic analysis of a Eu-doped aluminosilicate optical fiber preform,” J. Non-Cryst. Solids149(3), 229–242 (1992). [CrossRef]
  17. C. Pandey, S. Dhopte, P. Muthal, V. Kondawar, and S. Moharil, “Eu3+ ↔ Eu2+ redox reactions in bulk and nano CaF2:Eu,” Radiat. Eff. Defects Solids162(9), 651–658 (2007). [CrossRef]
  18. J. DiMaio, B. Kokuoz, T. L. James, T. Harkey, D. Monofsky, and J. Ballato, “Photoluminescent characterization of atomic diffusion in core-shell nanoparticles,” Opt. Express16(16), 11769–11775 (2008). [CrossRef] [PubMed]
  19. Y. Nageno, H. Takebe, K. Morinaga, and T. Izumitani, “Effect of modifier ions on fluorescence and absorption of Eu3+ in alkali and alkaline earth silicate glasses,” J. Non-Cryst. Solids169(3), 288–294 (1994). [CrossRef]
  20. J. Frantza and B. Mysen, “Raman spectra and structure of BaO-SiO2, SrO-SiO2, and CaO-SiO2 melts to 1600C,” Chem. Geol.121(1-4), 155–176 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited