OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 11 — Nov. 1, 2012
  • pp: 1538–1547

Silica exposed-core microstructured optical fibers

Roman Kostecki, Heike Ebendorff-Heidepriem, Claire Davis, Grant McAdam, Stephen C. Warren-Smith, and Tanya M. Monro  »View Author Affiliations

Optical Materials Express, Vol. 2, Issue 11, pp. 1538-1547 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1730 KB) | SpotlightSpotlight on Optics

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the fabrication of silica microstructured optical fibers with the core exposed along the whole length, and characterize the stability of these new fibers when exposed to some typical sensing and storage environments. We show the fiber loss to be the best achieved to date for exposed-core fibers, while the deterioration in the transmission properties is up to ∼2 orders of magnitude better than for the previously reported exposed-core fibers produced in soft glass. This opens up new opportunities for optical fiber sensors requiring long term and/or harsh environmental applications while providing real time analysis anywhere along the fibers length.

© 2012 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2290) Fiber optics and optical communications : Fiber materials
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(160.6030) Materials : Silica
(300.1030) Spectroscopy : Absorption
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Materials for Fiber Optics

Original Manuscript: July 30, 2012
Revised Manuscript: September 21, 2012
Manuscript Accepted: September 22, 2012
Published: October 2, 2012

Virtual Issues
Specialty Optical Fibers (2012) Optical Materials Express
November 6, 2012 Spotlight on Optics

Roman Kostecki, Heike Ebendorff-Heidepriem, Claire Davis, Grant McAdam, Stephen C. Warren-Smith, and Tanya M. Monro, "Silica exposed-core microstructured optical fibers," Opt. Mater. Express 2, 1538-1547 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Kasier, E. A. J. Marcatili, and S. E. Miller, “A new optical fiber,” Bell Sys. Tech. J.52, 265–269 (1973).
  2. J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett.21, 1547–1549 (1996). [CrossRef] [PubMed]
  3. T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol.12, 854–858 (2001). [CrossRef]
  4. T. Monro, D. Richardson, and P. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett.35, 1188–1189 (1999). [CrossRef]
  5. O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem.80, 4269–4283 (2008). [CrossRef] [PubMed]
  6. T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res.36, 467–495 (2006). [CrossRef]
  7. J. Lægsgaard and A. Bjarklev, “Microstructured optical fibers—fundamentals and applications.” J. Am. Ceram. Soc.89, 2–12 (2006).
  8. T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar V., “Sensing with suspended-core optical fibers,” Opt. Fiber Technol.16, 343–356 (2010). [CrossRef]
  9. H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express17, 2646–2657 (2009). [CrossRef] [PubMed]
  10. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426, 816–819 (2003). [CrossRef] [PubMed]
  11. K. Kiang, K. Frampton, T. Monro, R. Moore, J. Tucknott, D. Hewak, D. Richardson, and H. Rutt, “Extruded singlemode non-silica glass holey optical fibres,” Electron. Lett.38, 546–547 (2002). [CrossRef]
  12. H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. Moore, K. Frampton, F. Koizumi, D. Richardson, and T. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express12, 5082–5087 (2004). [CrossRef] [PubMed]
  13. J. Leong, P. Petropoulos, J. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. Moore, K. Frampton, V. Finazzi, X. Feng, T. Monro, and D. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-μm pumped supercontinuum generation,” J. Lightwave Technol.24, 183–190 (2006). [CrossRef]
  14. J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express13, 5883–5889 (2005). [CrossRef] [PubMed]
  15. A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng.46, 010503 (2007). [CrossRef]
  16. T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys.103, 103108 (2008). [CrossRef]
  17. A. Mazhorova, A. Markov, A. Ng, R. Chinnappan, O. Skorobogata, M. Zourob, and M. Skorobogatiy, “Label-free bacteria detection using evanescent mode of a suspended core terahertz fiber,” Opt. Express20, 5344–5355 (2012). [CrossRef] [PubMed]
  18. S. Afshar V., S. C. Warren-Smith, and T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Opt. Express15, 17891–17901 (2007). [CrossRef]
  19. E. P. Schartner, H. Ebendorff-Heidepriem, S. C. Warren-Smith, R. T. White, and T. M. Monro, “Driving down the detection limit in microstructured fiber-based chemical dip sensors,” Sensors11, 2961–2971 (2011). [CrossRef] [PubMed]
  20. Y. Ruan, E. P. Schartner, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Detection of quantum-dot labelled proteins using soft glass microstructured optical fibers,” Opt. Express15, 17819–17826 (2007). [CrossRef] [PubMed]
  21. H. Yan, J. Liu, C. Yang, G. Jin, C. Gu, and L. Hou, “Novel index-guided photonic crystal fiber surface-enhanced Raman scattering probe,” Opt. Express16, 8300–8305 (2008). [CrossRef] [PubMed]
  22. A. Bjarklev, J. B. Jensen, J. Riishede, J. Broeng, J. Laegsgaard, T. T. Larsen, T. Sorensen, K. Hougaard, and O. Bang, “Photonic crystal structures in sensing technology,” Proc. SPIE5502, 9–16 (2004). [CrossRef]
  23. J. E. Debs, H. Ebendorff-Heidepriem, J. S. Quinton, and T. M. Monro, “A fundamental study into the surface functionalization of soft glass microstructured optical fibers via silane coupling agents,” J. Lightwave Technol.27, 576–582 (2009). [CrossRef]
  24. Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Appl. Opt.42, 3509–3515 (2003). [CrossRef] [PubMed]
  25. C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, and C. H. B. Cruz, “Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre,” Meas. Sci. Technol.18, 3075–3081 (2007). [CrossRef]
  26. C. Martelli, P. Olivero, J. Canning, N. Groothoff, B. Gibson, and S. Huntington, “Micromachining structured optical fibers using focused ion beam milling,” Opt. Lett.32, 1575–1577 (2007). [CrossRef] [PubMed]
  27. A. van Brakel, C. Grivas, M. N. Petrovich, and D. J. Richardson, “Micro-channels machined in microstructured optical fibers by femtosecond laser,” Opt. Express15, 8731–8736 (2007). [CrossRef] [PubMed]
  28. J. P. Parry, B. C. Griffiths, N. Gayraud, E. D. McNaghten, A. M. Parkes, W. N. MacPherson, and D. P. Hand, “Towards practical gas sensing with micro-structured fibres,” Meas. Sci. Technol.20, 075301 (2009). [CrossRef]
  29. F. M. Cox, R. Lwin, M. C. J. Large, and C. M. B. Cordeiro, “Opening up optical fibres,” Opt. Express15, 11843–11848 (2007). [CrossRef] [PubMed]
  30. S. C. Warren-Smith, H. Ebendorff-Heidepriem, T. C. Foo, R. Moore, C. Davis, and T. M. Monro, “Exposed-core microstructured optical fibers for real-time fluorescence sensing,” Opt. Express17, 18533–18542 (2009). [CrossRef]
  31. S. Warren-Smith, E. Sinchenko, P. Stoddart, and T. Monro, “Distributed fluorescence sensing using exposed core microstructured optical fiber,” IEEE Photon. Technol. Lett.22, 1385–1387 (2010). [CrossRef]
  32. K. Peters, “Polymer optical fiber sensors—a review,” Smart Mater. Struct.20, 013002 (2011). [CrossRef]
  33. H. Ebendorff-Heidepriem, K. Kuan, M. R. Oermann, K. Knight, and T. M. Monro, “Extruded tellurite glass and fibers with low OH content for mid-infrared applications,” Opt. Mater. Express2, 432–442 (2012). [CrossRef]
  34. H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express15, 15086–15092 (2007). [CrossRef] [PubMed]
  35. S. C. Warren-Smith, H. Ebendorff-Heidepriem, S. Afshar V., G. McAdam, C. Davis, and T. Monro, “Corrosion sensing of aluminium alloys using exposed-core microstructured optical fibres,” Mater. Forum33, 110–121 (2009).
  36. K. Richardson, D. Krol, and K. Hirao, “Glasses for photonic applications,” Int. J. Appl. Glass Sci.1, 74–86 (2010). [CrossRef]
  37. M. Li and D. Nolan, “Optical transmission fiber design evolution,” J. Lightwave Technol.26, 1079–1092 (2008). [CrossRef]
  38. Heraeus Quarzglas GmbH & Co. KG, Pure Silica Rods for Specialty Fiber Applications, 1st ed. (2012), http://heraeus-quarzglas.com/ .
  39. D. Wildeboer, F. Jeganathan, R. G. Price, and R. A. Abuknesha, “Characterization of bacterial proteases with a panel of fluorescent peptide substrates,” Anal. Biochem.384, 321–328 (2009). [CrossRef]
  40. M. Y. Sim and S. Gleixner, “Studying the etch rates and selectivity of SiO2 and Al in BHF solutions,” in 2006 16th Biennial University/Government/Industry Microelectronics Symposium (2006), pp. 225–228.
  41. C. J. Voyce, A. D. Fitt, and T. M. Monro, “Mathematical modeling as an accurate predictive tool in capillary and microstructured fiber manufacture: the effects of preform rotation,” J. Lightwave Technol.26, 791–798 (2008). [CrossRef]
  42. M. Fujiwara, K. Toubaru, and S. Takeuchi, “Optical transmittance degradation in tapered fibers,” Opt. Express19, 8596–8601 (2011). [CrossRef] [PubMed]
  43. D. Tallant, T. Michalske, and W. Smith, “The effects of tensile stress on the Raman spectrum of silica glass,” J. Non-Cryst. Solids106, 380–383 (1988). [CrossRef]
  44. G. Brambilla, F. Xu, and X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterisation,” Electron. Lett.42, 517–519 (2006). [CrossRef]
  45. G. Zhai and L. Tong, “Roughness-induced radiation losses in optical micro or nanofibers,” Opt. Express15, 13805–13816 (2007). [CrossRef] [PubMed]
  46. R. Brandsch, G. Bar, and M.-H. Whangbo, “On the factors affecting the contrast of height and phase images in tapping mode atomic force microscopy,” Langmuir13, 6349–6353 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited