OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 11 — Nov. 1, 2012
  • pp: 1562–1570

Nanograting Bragg responses of femtosecond laser written optical waveguides in fused silica glass

Jianzhao Li, Stephen Ho, Moez Haque, and Peter R. Herman  »View Author Affiliations


Optical Materials Express, Vol. 2, Issue 11, pp. 1562-1570 (2012)
http://dx.doi.org/10.1364/OME.2.001562


View Full Text Article

Enhanced HTML    Acrobat PDF (4262 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Multiple Bragg nanograting stop bands are reported for the first time in single and multi-mode optical waveguides generated by femtosecond laser direct writing in bulk fused silica glass. The stop bands observed in the guided broadband light spectra originated with the orthogonal alignment of volume nanogratings co-generated with the waveguides. Rapid shifting of stop bands across the near UV and visible spectrum was sensitively controlled by laser exposure and sample scanning direction. Bragg periods anticipated from the observed stop bands concurred with the nanograting structural pitches revealed by scanning electron microscopy. The spectroscopic characterization of nanogratings along macroscopic-scale (12.5 mm long) waveguide sections constitutes a non-destructive, convenient and sensitive approach to examine long-range order and uniformity of the self-organized periodic structures that may assist to unravel the laser-glass interaction physics of nanograting formation.

© 2012 OSA

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(300.0300) Spectroscopy : Spectroscopy
(320.2250) Ultrafast optics : Femtosecond phenomena
(350.3390) Other areas of optics : Laser materials processing
(130.2755) Integrated optics : Glass waveguides
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Laser Materials Processing

History
Original Manuscript: July 5, 2012
Revised Manuscript: September 25, 2012
Manuscript Accepted: September 25, 2012
Published: October 5, 2012

Citation
Jianzhao Li, Stephen Ho, Moez Haque, and Peter R. Herman, "Nanograting Bragg responses of femtosecond laser written optical waveguides in fused silica glass," Opt. Mater. Express 2, 1562-1570 (2012)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-2-11-1562


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys.36(11), 3688–3689 (1965). [CrossRef]
  2. H. M. van Driel, J. E. Sipe, and J. F. Young, “Laser induced periodic surface structure on solids: a universal phenomenon,” Phys. Rev. Lett.49(26), 1955–1958 (1982). [CrossRef]
  3. J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B27(2), 1141–1154 (1983). [CrossRef]
  4. J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser induced periodic surface structure. II. Experiments on Ge, Si, Al and brass,” Phys. Rev. B27(2), 1155–1172 (1983). [CrossRef]
  5. A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett.92(4), 041914 (2008). [CrossRef]
  6. Q. Sun, F. Liang, R. Vallée, and S. L. Chin, “Nanograting formation on the surface of silica glass by scanning focused femtosecond laser pulses,” Opt. Lett.33(22), 2713–2715 (2008). [CrossRef] [PubMed]
  7. J. Bonse, A. Rosenfeld, and J. Krüger, “Femtosecond laser-induced periodic surface structures: recent approaches to explain their sub-wavelength periodicities,” Proc. SPIE7994, 79940M (2011).
  8. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003). [CrossRef] [PubMed]
  9. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96(5), 057404 (2006). [CrossRef] [PubMed]
  10. C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett.87(1), 014104 (2005). [CrossRef]
  11. P. G. Kazansky and Y. Shimotsuma, “Self-assembled sub-wavelength structures and form birefrigence created by femtosecond laser writing in glass: properties and applications,” J. Ceram. Soc. Jpn.116(1358), 1052–1062 (2008). [CrossRef]
  12. R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photon. Rev.2(1-2), 26–46 (2008). [CrossRef]
  13. S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys., A Mater. Sci. Process.104(2), 503–507 (2011). [CrossRef]
  14. W. Yang, E. Bricchi, P. G. Kazansky, J. Bovatsek, and A. Y. Arai, “Self-assembled periodic sub-wavelength structures by femtosecond laser direct writing,” Opt. Express14(21), 10117–10124 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?id=116350 . [CrossRef] [PubMed]
  15. L. A. Fernandes, J. R. Grenier, P. R. Herman, J. S. Aitchison, and P. V. Marques, “Femtosecond laser writing of waveguide retarders in fused silica for polarization control in optical circuits,” Opt. Express19(19), 18294–18301 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-19-18294 . [CrossRef] [PubMed]
  16. W. Cai, A. R. Libertun, and R. Piestun, “Polarization selective computer-generated holograms realized in glass by femtosecond laser induced nanogratings,” Opt. Express14(9), 3785–3791 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?&uri=oe-14-9-3785 . [CrossRef] [PubMed]
  17. L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tunnermann, “Birefringent elements based on femtosecond laser-induced nanogratings,” Proc. SPIE7589, 758919 (2010). [CrossRef]
  18. R. S. Taylor, C. Hnatovsky, E. Simova, P. P. Rajeev, D. M. Rayner, and P. B. Corkum, “Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass,” Opt. Lett.32(19), 2888–2890 (2007). [CrossRef] [PubMed]
  19. A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett.26(5), 277–279 (2001). [CrossRef] [PubMed]
  20. C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett.30(14), 1867–1869 (2005). [CrossRef] [PubMed]
  21. V. Maselli, R. Osellame, G. Cerullo, R. Ramponi, P. Laporta, L. Magagnin, and P. L. Cavallotti, “Fabrication of long microchannels with circular cross section using astigmatically shaped femtosecond laser pulses and chemical etching,” Appl. Phys. Lett.88(19), 191107 (2006). [CrossRef]
  22. X. Yu, Y. Liao, F. He, B. Zeng, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Tuning etch selectivity of fused silica irradiated by femtosecond laser pulses by controlling polarization of the writing pulses,” J. Appl. Phys.109(5), 053114 (2011). [CrossRef]
  23. S. Ho, P. R. Herman, and J. S. Aitchison, “Single- and multi-scan femtosecond laser writing for selective chemical etching of cross section patternable glass micro-channels,” Appl. Phys., A Mater. Sci. Process.106(1), 5–13 (2012). [CrossRef]
  24. J. D. Mills, P. G. Kazansky, E. Bricchi, and J. J. Baumberg, “Embedded anisotropic microreflectors by femtosecond-laser nanomachining,” Appl. Phys. Lett.81(2), 196–198 (2002). [CrossRef]
  25. P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “‘Quill’ writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett.90(15), 151120 (2007). [CrossRef]
  26. W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura, and K. Hirao, “Ultrashort-pulse laser calligraphy,” Appl. Phys. Lett.93(17), 171109 (2008). [CrossRef]
  27. B. Poumellec, M. Lancry, J.-C. Poulin, and S. Ani-Joseph, “Non reciprocal writing and chirality in femtosecond laser irradiated silica,” Opt. Express16(22), 18354–18361 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-22-18354 . [CrossRef] [PubMed]
  28. D. N. Vitek, E. Block, Y. Bellouard, D. E. Adams, S. Backus, D. Kleinfeld, C. G. Durfee, and J. A. Squier, “Spatio-temporally focused femtosecond laser pulses for nonreciprocal writing in optically transparent materials,” Opt. Express18(24), 24673–24678 (2010), http://www.opticsinfobase.org/oe/fulltext.cfm?uri=oe-18-24-24673&id=207185 . [CrossRef] [PubMed]
  29. H. Zhang, S. M. Eaton, and P. R. Herman, “Single-step writing of Bragg grating waveguides in fused silica with an externally modulated femtosecond fiber laser,” Opt. Lett.32(17), 2559–2561 (2007). [CrossRef] [PubMed]
  30. R. Kashyap, Fiber Bragg Gratings (Academic, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited