OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 11 — Nov. 1, 2012
  • pp: 1663–1670

Role of hydrogen loading and glass composition on the defects generated by the femtosecond laser writing process of fiber Bragg gratings

Neil Troy, Christopher W. Smelser, and Denise M. Krol  »View Author Affiliations


Optical Materials Express, Vol. 2, Issue 11, pp. 1663-1670 (2012)
http://dx.doi.org/10.1364/OME.2.001663


View Full Text Article

Enhanced HTML    Acrobat PDF (1199 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The creation of fiber Bragg gratings (FBGs) in optical fibers by laser irradiation causes the formation of defects in the modified glass. We have used confocal fluorescence spectroscopy to identify the location and types of defects formed after writing FBGs with the femtosecond laser phase mask technique. Our results show that non-bridging oxygen hole centers (NBOHCs) and self-trapped excitons (Eδ’) are formed throughout all-silica core Sumitomo Z-fiber. Similar defects are observed for Ge-doped silica fiber, Corning SMF-28, but in this case the relative concentrations of NBOHC and Eδ’ vary from the core to the cladding. In both fibers, hydrogen loading prior to irradiation appears to passivate the defects except in the Ge-doped core where the NBOHC defects persist.

© 2012 OSA

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(160.2750) Materials : Glass and other amorphous materials
(230.1480) Optical devices : Bragg reflectors
(320.2250) Ultrafast optics : Femtosecond phenomena
(320.7140) Ultrafast optics : Ultrafast processes in fibers
(350.3390) Other areas of optics : Laser materials processing

ToC Category:
Materials for Fiber Optics

History
Original Manuscript: August 7, 2012
Revised Manuscript: October 16, 2012
Manuscript Accepted: October 17, 2012
Published: October 25, 2012

Virtual Issues
Specialty Optical Fibers (2012) Optical Materials Express

Citation
Neil Troy, Christopher W. Smelser, and Denise M. Krol, "Role of hydrogen loading and glass composition on the defects generated by the femtosecond laser writing process of fiber Bragg gratings," Opt. Mater. Express 2, 1663-1670 (2012)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-2-11-1663


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71(23), 3329–3331 (1997). [CrossRef]
  2. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process.77(1), 109–111 (2003). [CrossRef]
  3. T. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett.36(3), 226–227 (2000). [CrossRef]
  4. S. Taccheo, G. Della Valle, R. Osellame, G. Cerullo, N. Chiodo, P. Laporta, O. Svelto, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Er:Yb-doped waveguide laser fabricated by femtosecond laser pulses,” Opt. Lett.29(22), 2626–2628 (2004). [CrossRef] [PubMed]
  5. S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Bragg grating inscription in various optical fibers with femtosecond infrared lasers and a phase mask,” Opt. Mater. Express1(4), 754–765 (2011). [CrossRef]
  6. D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett.16(8), 1864–1866 (2004). [CrossRef]
  7. C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Hydrogen loading for fiber grating writing with a femtosecond laser and a phase mask,” Opt. Lett.29(18), 2127–2129 (2004). [CrossRef] [PubMed]
  8. B. L. Zhang and K. Raghavachari, “Microscopic reaction mechanisms in hydrogen-loaded germanosilicate fibers: formation of divalent Ge defects,” Phys. Rev. B Condens. Matter51(12), 7946–7949 (1995). [CrossRef] [PubMed]
  9. B. I. Greene, D. M. Krol, S. G. Kosinski, P. J. Lemaire, and P. N. Saeta, “Thermal and photo-initiated reactions of H2 with germanosilicate optical fibers,” J. Non-Cryst. Solids168(1-2), 195–199 (1994). [CrossRef]
  10. M. Fujimaki, T. Kasahara, S. Shimoto, N. Miyazaki, S. Tokuhiro, K. Soo Seol, and Y. Ohki, “Structural changes induced by KrF excimer laser photons in H2-loaded Ge-doped SiO2 glass,” Phys. Rev. B60(7), 4682–4687 (1999). [CrossRef]
  11. W. J. Reichman, J. W. Chan, C. W. Smelser, S. J. Mihailov, and D. M. Krol, “Spectroscopic characterization of different femtosecond laser modification regimes in fused silica,” J. Opt. Soc. Am. B24(7), 1627–1632 (2007). [CrossRef]
  12. C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express13(14), 5377–5386 (2005). [CrossRef] [PubMed]
  13. J. Albert, M. Fokine, and W. Margulis, “Grating formation in pure silica-core fibers,” Opt. Lett.27(10), 809–811 (2002). [CrossRef] [PubMed]
  14. K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, “Formation and decay of nonbridging oxygen hole centers in SiO2 glasses induced by F2 laser irradiation: in situ observation using a pump and probe technique,” Appl. Phys. Lett.79(12), 1757–1759 (2001). [CrossRef]
  15. L. Skuja, H. Hosono, M. Mizuguchi, D. Guttler, and A. Silin, “Site-selective study of the 1.8 eV luminescence band in glassy GeO2,” J. Lumin.87–89, 699–701 (2000). [CrossRef]
  16. S. Girard, J.-P. Meunier, Y. Ouerdane, A. Boukenter, B. Vincent, and A. Boudrioua, “Spatial distribution of the red luminescence in pristine, γ rays and ultraviolet-irradiated multimode optical fibers,” Appl. Phys. Lett.84(21), 4215–4217 (2004). [CrossRef]
  17. Y. Ikuta, K. Kajihara, M. Hirano, S. Kikugawa, and H. Hosono, “Effects of H2 impregnation on excimer-laser-induced oxygen-deficient center formation in synthetic SiO2 glass,” Appl. Phys. Lett.80(21), 3916–3918 (2002). [CrossRef]
  18. M. Mizuguchi, L. Skuja, H. Hosono, and T. Ogawa, “Photochemical processes induced by 157-nm light in H2-impregnated glassy SiO2:OH,” Opt. Lett.24(13), 863–865 (1999). [CrossRef] [PubMed]
  19. K. P. Chen, P. R. Herman, R. Tam, and J. Zhang, “Rapid long-period grating formation in hydrogen-loaded fibre with 157 nm F,-laser radiation,” Electron. Lett.36(24), 2000–2001 (2000). [CrossRef]
  20. M. Essid, J. L. Brebner, J. Albert, and K. Awazu, “Difference in the behavior of oxygen deficient defects in Ge-doped silica optical fiber preforms under ArF and KrF excimer laser irradiation,” J. Appl. Phys.84(8), 4193–4197 (1998). [CrossRef]
  21. D. P. Poulios, J. P. Spoonhower, and N. P. Bigelow, “Influence of oxygen deficiencies and hydrogen-loading on defect luminescence in irradiated Ge-doped silica glasses,” J. Lumin.101(1-2), 23–33 (2003). [CrossRef]
  22. K. Awazu, K. Muta, and H. Kawazoe, “Formation mechanism of hydrogen-associated defect with an 11.9 mT doublet in electron spin resonance and red luminescence in 9SiO2:GeO2 fibers,” J. Appl. Phys.74(4), 2237–2240 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited