OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 12 — Dec. 1, 2012
  • pp: 1776–1790

Dual-arm Z-scan technique to extract dilute solute nonlinearities from solution measurements

Manuel R. Ferdinandus, Matthew Reichert, Trenton R. Ensley, Honghua Hu, Dmitry A. Fishman, Scott Webster, David J. Hagan, and Eric W. Van Stryland  »View Author Affiliations


Optical Materials Express, Vol. 2, Issue 12, pp. 1776-1790 (2012)
http://dx.doi.org/10.1364/OME.2.001776


View Full Text Article

Enhanced HTML    Acrobat PDF (1377 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a technique in which small solute nonlinearities may be extracted from large solvent signals by performing simultaneous Z-scans on two samples (solvent and solution). By using a dual-arm Z-scan apparatus with identical arms, fitting error in determining the solute nonlinearity is reduced because the irradiance fluctuations are correlated for both the solvent and solution measurements. To verify the sensitivity of this technique, the dispersion of nonlinear refraction of a squaraine molecule is measured. Utilizing this technique allows for the effects of the solvent n2 to be effectively eliminated, thus overcoming a longstanding problem in nonlinear optical characterization of organic dyes.

© 2012 OSA

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials

ToC Category:
Nonlinear Optical Materials

History
Original Manuscript: September 26, 2012
Revised Manuscript: November 9, 2012
Manuscript Accepted: November 15, 2012
Published: November 19, 2012

Citation
Manuel R. Ferdinandus, Matthew Reichert, Trenton R. Ensley, Honghua Hu, Dmitry A. Fishman, Scott Webster, David J. Hagan, and Eric W. Van Stryland, "Dual-arm Z-scan technique to extract dilute solute nonlinearities from solution measurements," Opt. Mater. Express 2, 1776-1790 (2012)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-2-12-1776


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. A. Bader, G. Marowsky, A. Bahtiar, K. Koynov, C. Bubeck, H. Tillmann, H.-H. Hörhold, and S. Pereira, “Poly(p-phenylenevinylene) derivatives: new promising materials for nonlinear all-optical waveguide switching,” J. Opt. Soc. Am. B 19(9), 2250–2262 (2002). [CrossRef]
  2. D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photonics 2(1), 60–200 (2010). [CrossRef]
  3. M. Lipson, “Guiding, modulating, and emitting light on silicon – challenges and opportunities,” J. Lightwave Technol. 23(12), 4222–4238 (2005). [CrossRef]
  4. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009). [CrossRef]
  5. Z.-M. Meng, F. Qin, and Z.-Y. Li, “Ultrafast all-optical switching in one-dimensional semiconductor-polymer hybrid nonlinear photonic crystals with relaxing Kerr nonlinearity,” J. Opt. 14(6), 065003 (2012). [CrossRef]
  6. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
  7. J. S. Aitchison, A. Villeneuve, and G. I. Stegeman, “All-optical switching in a nonlinear GaAlAs X junction,” Opt. Lett. 18(14), 1153–1155 (1993). [CrossRef] [PubMed]
  8. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005). [CrossRef]
  9. J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010). [CrossRef] [PubMed]
  10. J. M. Hales, S. Zheng, S. Barlow, S. R. Marder, and J. W. Perry, “Bisdioxaborine polymethines with large third-order nonlinearities for all-optical signal processing,” J. Am. Chem. Soc. 128(35), 11362–11363 (2006). [CrossRef] [PubMed]
  11. B. Esembeson, M. L. Scimeca, T. Michinobu, F. Diederich, and I. Biaggio, “A high-optical quality supramolecular assembly for third-order integrated nonlinear optics,” Adv. Mater. 20(23), 4584–4587 (2008). [CrossRef]
  12. M. Kivala and F. Diederich, “Acetylene-derived strong organic acceptors for planar and nonplanar push-pull chromophores,” Acc. Chem. Res. 42(2), 235–248 (2009). [CrossRef] [PubMed]
  13. C. Zhan, D. Zhang, D. Zhu, D. Wang, Y. Li, D. Li, Z. Lu, L. Zhao, and Y. Nie, “Third- and fifth-order optical nonlinearities in a new stilbazolium derivative,” J. Opt. Soc. Am. B 19(3), 369–375 (2002). [CrossRef]
  14. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990). [CrossRef]
  15. H. Ma, S. L. Gomes, and C. B. de Araujo, “Measurements of nondegenerate optical nonlinearity using a twocolor single beam method,” Appl. Phys. Lett. 59(21), 2666–2668 (1991). [CrossRef]
  16. Q.- Gong, J.- Li, T.- Zhang, and H. Yang, “Ultrafast third-order optical nonlinearity of organic solvents investigated by subpicosecond transient optical Kerr effect,” Chin. Phys. Lett. 15(1), 30–31 (1998). [CrossRef]
  17. S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369(3-4), 318–324 (2003). [CrossRef]
  18. R. Dawley, Sales Department, Starna Cells, Inc., P.O. Box 1919, Atascadero, CA, 93423 (personal communication, 2012).
  19. S. Webster, D. Peceli, H. Hu, L. A. Padilha, O. V. Przhonska, A. E. Masunov, A. O. Gerasov, A. D. Kachkovski, Y. L. Slominsky, A. I. Tolmachev, V. V. Kurdyukov, O. O. Viniychuk, E. Barrasso, R. Lepkowicz, D. J. Hagan, and E. W. Van Stryland, “Near-unity quantum yields for intersystem crossing and singlet oxygen generation in polymethine-like molecules: design and experimental realization,” J. Phys. Chem. Lett. 1(15), 2354–2360 (2010). [CrossRef]
  20. A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36(8), 1627–1639 (1964). [CrossRef]
  21. OriginLab (2012). Origin (version 8.6.0) [Computer software]. Northampton, MA. Retrieved June 1, 2012. Available from http://www.OriginLab.com .
  22. D. Milam, “Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica,” Appl. Opt. 37(3), 546–550 (1998). [CrossRef] [PubMed]
  23. J. Ward, “Calculation of nonlinear optical susceptibilities using diagrammatic perturbation theory,” Rev. Mod. Phys. 37(1), 1–18 (1965). [CrossRef]
  24. B. J. Orr and J. F. Ward, “Perturbation theory of the non-linear optical polarization of an isolated system,” Mol. Phys. 20(3), 513–526 (1971). [CrossRef]
  25. M. Balu, L. A. Padilha, D. J. Hagan, E. W. Van Stryland, S. Yao, K. Belfield, S. Zheng, S. Barlow, and S. Marder, “Broadband Z-scan characterization using a high-spectral-irradiance, high-quality supercontinuum,” J. Opt. Soc. Am. B 25(2), 159–165 (2008). [CrossRef]
  26. P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge University Press, 1990).
  27. R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, 1996).
  28. B. Gu, W. Ji, and X.-Q. Huang, “Analytical expression for femtosecond-pulsed Z scans on instantaneous nonlinearity,” Appl. Opt. 47(9), 1187–1192 (2008). [CrossRef] [PubMed]
  29. R. A. Ganeev and I. A. Kulagin, “Single-shot Y-scan for characterization of the nonlinear optical parameters of transparent materials,” J. Opt. A, Pure Appl. Opt. 11(8), 085001 (2009). [CrossRef]
  30. K. Kamada, “Mechanisms of ultrafast refractive index change in organic system,” Proc. SPIE 4797, 65–75 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited