OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 12 — Dec. 1, 2012
  • pp: 1797–1802

Refractive indices, phase-matching directions and third order nonlinear coefficients of rutile TiO2 from third harmonic generation

Adrien Borne, Patricia Segonds, Benoit Boulanger, Corinne Félix, and Jérôme Debray  »View Author Affiliations


Optical Materials Express, Vol. 2, Issue 12, pp. 1797-1802 (2012)
http://dx.doi.org/10.1364/OME.2.001797


View Full Text Article

Enhanced HTML    Acrobat PDF (1519 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Experiments of third harmonic generation in rutile TiO2 allowed us to determine the phase-matching angles and the refractive indices of the crystal up to 4500 nm. We also showed that χ16 and χ18 coefficients of the third order electric susceptibility tensor exhibit opposite signs, and that |χ18(616.7nm)| = 9.7 × 10−20 m2V−2.

© 2012 OSA

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.7220) Nonlinear optics : Upconversion

ToC Category:
Nonlinear Optical Materials

History
Original Manuscript: October 3, 2012
Revised Manuscript: November 12, 2012
Manuscript Accepted: November 17, 2012
Published: November 26, 2012

Citation
Adrien Borne, Patricia Segonds, Benoit Boulanger, Corinne Félix, and Jérôme Debray, "Refractive indices, phase-matching directions and third order nonlinear coefficients of rutile TiO2 from third harmonic generation," Opt. Mater. Express 2, 1797-1802 (2012)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-2-12-1797


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys.58(12), 1131–1143 (1990). [CrossRef]
  2. F. Gravier and B. Boulanger, “Cubic parametric frequency generation in rutile single crystal,” Opt. Express14(24), 11715–11720 (2006). [CrossRef] [PubMed]
  3. F. Gravier and B. Boulanger, “Third-order frequency generation in TiO2 rutile and KTiOPO4,” Opt. Mater.30(1), 33–36 (2007). [CrossRef]
  4. K. Bencheikh, F. Gravier, J. Douady, J. A. Levenson, and B. Boulanger, “Triple photons: a challenge in nonlinear and quantum optics,” C. R. Phys.8(2), 206–220 (2007). [CrossRef]
  5. M. E. Straumanis, T. Ejima, and W. J. James, “The TiO2 phase explored by the lattice constant and density method,” Acta Crystallogr.14(5), 493–497 (1961). [CrossRef]
  6. Data from Almaz Optics Inc., www.almazoptics.com/TiO2.htm .
  7. J. R. Devore, “Refractive indices of rutile and sphalerite,” J. Opt. Soc. Am.41(6), 416–417 (1951). [CrossRef]
  8. J. Rams, A. Tejeda, and J. M. Cabrera, “Refractive indices of rutile as a function of temperature and wavelength,” J. Appl. Phys.82(3), 994–997 (1997). [CrossRef]
  9. D. C. Cronemeyer, “Electrical and optical properties of rutile single crystals,” Phys. Rev.87(5), 876–886 (1952). [CrossRef]
  10. N. G. Khadzhiiski and N. I. Koroteev, “Coherent Raman ellipsometry of crystals: determination of the components and the dispersion of the third-order nonlinear susceptibility tensor of rutile,” Opt. Commun.42(6), 423–427 (1982). [CrossRef]
  11. R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B Condens. Matter39(5), 3337–3350 (1989). [CrossRef] [PubMed]
  12. T. Hashimoto, T. Yoko, and S. Sakka, “Sol-Gel preparation and third-order nonlinear optical properties of TiO2 thin films,” Bull. Chem. Soc. Jpn.67(3), 653–660 (1994). [CrossRef]
  13. H. Long, A. Chen, G. Yang, Y. Li, and P. Lu, “Third-order optical nonlinearities in anatase and rutile TiO2 thin films,” Thin Solid Films517(19), 5601–5604 (2009). [CrossRef]
  14. M. E. Lines, “Influence of d orbitals on the nonlinear optical response of transparent transition-metal oxides,” Phys. Rev. B Condens. Matter43(14), 11978–11990 (1991). [CrossRef] [PubMed]
  15. B. Boulanger, J. P. Fève, and G. Marnier, “Field-factor formalism for the study of the tensorial symmetry of four-wave nonlinear optical parametric interactions in uniaxial and biaxial crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics48(6), 4730–4751 (1993). [CrossRef] [PubMed]
  16. J. P. Fève, B. Boulanger, and Y. Guillien, “Efficient energy conversion for cubic third-harmonic generation that is phase matched in KTiOPO4,” Opt. Lett.25(18), 1373–1375 (2000). [CrossRef] [PubMed]
  17. Y. Guillien, B. Ménaert, J. P. Fève, P. Segonds, J. Douady, B. Boulanger, and O. Pacaud, “Crystal growth and refined Sellmeier equations over the complete transparency range of RbTiOPO4,” Opt. Mater.22(2), 155–162 (2003). [CrossRef]
  18. O. Pacaud, J. P. Fève, B. Boulanger, and B. Ménaert, “Cylindrical KTiOPO4 crystal for enhanced angular tunability of phase-matched optical parametric oscillators,” Opt. Lett.25(10), 737–739 (2000). [CrossRef] [PubMed]
  19. A. Hadni, Essentials of Modern Physics Applied to the Study of the Infrared (Pergamon Press, 1967).
  20. R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett.5(1), 17–19 (1964). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited