OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 2 — Feb. 1, 2012
  • pp: 126–139

Absolute measurement of the quadratic nonlinear susceptibility of lithium niobate in waveguides

Roland Schiek and Thomas Pertsch  »View Author Affiliations

Optical Materials Express, Vol. 2, Issue 2, pp. 126-139 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1581 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Efficiency measurements of second-harmonic generation in quasi-phase-matched lithium niobate waveguides yield a value for the nonlinear optical second-order susceptibility tensor element χ z z z ( 2 ) ( 2 ω ; ω , ω ) = d 33 = ( 20.6 ± 2.1 ) pm V in periodically poled, titanium-indiffused waveguides in congruent composition lithium niobate at room temperature for a fundamental wavelength of 1.52 μm. A special fringe structure in the tuning curves was observed and explained as an unique feature in quasi-phase-matched parametric processes.

© 2012 OSA

OCIS Codes
(160.3730) Materials : Lithium niobate
(190.2620) Nonlinear optics : Harmonic generation and mixing

ToC Category:
Nonlinear Optical Materials

Original Manuscript: September 6, 2011
Revised Manuscript: December 22, 2011
Manuscript Accepted: December 22, 2011
Published: January 9, 2012

Virtual Issues
Nonlinear Optics (2011) Optical Materials Express

Roland Schiek and Thomas Pertsch, "Absolute measurement of the quadratic nonlinear susceptibility of lithium niobate in waveguides," Opt. Mater. Express 2, 126-139 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightw. Technol.24, 2579–2592 (2006). [CrossRef]
  2. W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithum niobate,” Opt. Photon. News19, 24–31 (2008). [CrossRef]
  3. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B14, 2268–2294 (1997). [CrossRef]
  4. H. Rabin and C. L. Tang, Quantum Electronics: A Treatise, Volume 1, Nonlinear Optics (Academic Press, New York, 1975), pp. 15–19.
  5. M. Schubert and B. Wilhelmi, Nonlinear Optics and Quantum Electronics (John Wiley & Sons, New York, 1986), p. 39.
  6. I. Shoji, T. Ue, K. Hayase, A. Arai, M. Takeda, S. Nakajima, A. Neduka, R. Ito, and Y. Furukawa, “Accurate measurement of second-order nonlinear-optical coefficients of near-stoichiometric LiNbO3 at 1.31 and 1.06μm,” in Nonlinear Optics: Materials, Fundamentals and Applications, OSA Technical Digest (CD) (Optical Society of America, 2007), paper WE30.
  7. R. C. Miller and W. A. Nordland, “Dependence of second-harmonic-generation coefficients of LiNbO3 on melt composition,” J. Appl. Phys.42, 4145–4147 (1971). [CrossRef]
  8. R. S. Klein, G. E. Kugel, A. Maillard, K. Polgár, and A. Péter, “Absolute non-linear optical coefficients of LiNbO3 for near stoichiometric crystal compositions,” Opt. Mater.22, 171–174 (2003). [CrossRef]
  9. W. J. Alford and A. V. Smith, “Wavelength variation of the second-order nonlinear coefficients of KNbO3, KTiOPO4, KTiOAsO4, LiNbO3, LiIO3, β-BaB2O4, KH2PO4, and LiB3O5 crystals: a test of Miller wavelength scaling,” J. Opt. Soc. Am. B18, 524–533 (2001). [CrossRef]
  10. D. Xue and S. Zhang, “The effect of stoichiometry on nonlinear optical properties of LiNbO3,” J. Phys.: Condens. Mat.9, 7515–7522 (1997). [CrossRef]
  11. G. P. Bava, I. Montrosset, W. Sohler, and H. Suche, “Numerical modeling of Ti:LiNbO3 integrated optical parametric oscillators,” IEEE J. Quantum Electron.QE-23, 42–51 (1987). [CrossRef]
  12. E. Strake, G. P. Bava, and I. Montrosset, “Guided modes of Ti:LiNbO3 channel waveguides: a novel quasi-analytical technique in comparison with a scalar finite-element method,” J. Lightw. Technol.6, 1126–1135 (1988). [CrossRef]
  13. G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quant. Electron.16, 373–375 (1984). [CrossRef]
  14. S. Helmfrid and G. Arvidsson, “Influence of randomly varying domain lengths and nonuniform effective index on second-harmonic generation in quasi-phase-matching waveguides,” J. Opt. Soc. Am. B8, 797–804 (1991). [CrossRef]
  15. J. S. Pelc, C. R. Phillips, D. Chang, C. Langrock, and M. M. Fejer, “Efficiency pedestal in quasi-phase-matching devices with random duty-cycle errors,” Opt. Lett.36, 864–866 (2011). [CrossRef] [PubMed]
  16. R. Schiek, Y. Baek, and G. I. Stegeman, “Second-harmonic generation and cascacded nonlinearity in titanium-indiffused lithium niobate channel waveguides,” J. Opt. Soc. Am. B15, 2255–2268 (1998). [CrossRef]
  17. G. Berth, V. Quiring, W. Sohler, and A. Zrenner, “Depth-resolved analysis of ferroelectric domain structures in Ti:PPLN waveguides by nonlinear confocal laser scanning microscopy,” Ferroelectrics352, 78–85 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited