OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 2 — Feb. 1, 2012
  • pp: 173–182

Broadband quasi-omnidirectional antireflection AlGaInP window for III-V multi-junction solar cells through thermally dewetted Au nanotemplate

R. Y. Zhang, B. Shao, J. R. Dong, K. Huang, Y. M. Zhao, S. Z. Yu, and H. Yang  »View Author Affiliations


Optical Materials Express, Vol. 2, Issue 2, pp. 173-182 (2012)
http://dx.doi.org/10.1364/OME.2.000173


View Full Text Article

Enhanced HTML    Acrobat PDF (3724 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Al(Ga)InP subwavelength structures (SWS) were fabricated and optimized through thermally dewetted Au nanotemplate and ICP pattern-transfer. When λ< 900 nm, most AlGaInP nanostructures exhibit the reflectivity of less than 2% and insensitive to the incident angle up to 45°. When λ extends to 1800 nm, the reflectivity of less than 5% over 0°-45° is achieved in the optimized nanostructure, which benefits III-V multi-junction solar cells to improve their efficiency. Moreover, not only is such cost-effective nano-fabrication process completely compatible with the other processing of III-V solar cells, but their defined disordered SWS benefit the antireflection performance over broadband and wide view according to the comparison between the measurement and simulation results from AlGaInP SWS.

© 2012 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(220.4241) Optical design and fabrication : Nanostructure fabrication
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Nanomaterials

History
Original Manuscript: November 14, 2011
Revised Manuscript: January 1, 2012
Manuscript Accepted: January 9, 2012
Published: January 12, 2012

Citation
R. Y. Zhang, B. Shao, J. R. Dong, K. Huang, Y. M. Zhao, S. Z. Yu, and H. Yang, "Broadband quasi-omnidirectional antireflection AlGaInP window for III-V multi-junction solar cells through thermally dewetted Au nanotemplate," Opt. Mater. Express 2, 173-182 (2012)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-2-2-173


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. D. Partain, M. S. Kuryla, R. E. Weiss, R. A. Ransom, P. S. Mcleod, L. M. Fraas, and J. A. Cape, “26.1% solar cell efficiency for Ge mechanically stacked under GaAs,” J. Appl. Phys.62(7), 3010–3015 (1987). [CrossRef]
  2. K. A. Bertness, S. R. Kurtz, D. J. Friedman, A. E. Kibbler, C. Kramer, and J. M. Olson, “29.5% efficient GaInP/GaAs tandem solar cells,” Appl. Phys. Lett.65(8), 989–991 (1994). [CrossRef]
  3. R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multi-junction solar cells,” Appl. Phys. Lett.90(18), 183516 (2007). [CrossRef]
  4. W. Guter, J. Schone, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009). [CrossRef]
  5. M. Stan, D. Aiken, B. Cho, A. Cornfeld, V. Ley, P. Patel, P. Sharps, and T. Varghese, “High-efficiency quadruple junction solar cells using OMVPE with inverted metamorphic device structures,” J. Cryst. Growth312(8), 1370–1374 (2010). [CrossRef]
  6. C. H. Henry, “Limitation efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys.51(8), 4494–4500 (1980). [CrossRef]
  7. W. Guter, J. Schone, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple junction solar cell reaching 41.1% conversion efficiency under contrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009). [CrossRef]
  8. M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, and E. F. Schubert, “Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm,” Opt. Express16(8), 5290–5298 (2008). [CrossRef] [PubMed]
  9. Y. Lee, K. Koh, H. Na, K. Kim, J.-J. Kang, and J. Kim, “Lithography-free fabrication of large area subwavelength antireflection structures using thermally dewetted Pt/Pd alloy etch mask,” Nanoscale Res. Lett.4(4), 364–370 (2009). [CrossRef] [PubMed]
  10. Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett.78(2), 142–143 (2001). [CrossRef]
  11. C. H. Chiu, P. C. Yu, H. C. Kuo, C. C. Chen, T. C. Lu, S. C. Wang, S. H. Hsu, Y. J. Cheng, and Y. C. Chang, “Broadband and omnidirectional antireflection employing disordered GaN nanopillars,” Opt. Express16(12), 8748–8754 (2008). [CrossRef] [PubMed]
  12. S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broadband and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater.21(9), 973–978 (2009). [CrossRef]
  13. Y. F. Li, J. H. Zhang, S. J. Zhu, H. P. Dong, F. Jia, Z. H. Wang, Z. Q. Sun, L. Zhang, Y. Li, H. B. Li, W. Q. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater.21(46), 4731–4734 (2009).
  14. J. Tommila, V. Polojarvi, A. Aho, A. Tukiainen, J. Viheriala, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells94(10), 1845–1848 (2010). [CrossRef]
  15. Y. M. Song, E. S. Choi, J. S. Yu, and Y. T. Lee, “Light-extraction enhancement of red AlGaInP light-emitting diodes with antireflective subwavelength structures,” Opt. Express17(23), 20991–20997 (2009). [CrossRef] [PubMed]
  16. J. W. Leem, J. S. Yu, Y. M. Song, and Y. T. Lee, “Antireflective characteristics of disordered GaAs subwavlength structures by thermally dewetted Au nanoparticles,” Sol. Energy Mater. Sol. Cells95(2), 669–676 (2011). [CrossRef]
  17. J. W. Leem and J. S. Yu, “Broadband and wide-angle antireflection subwavelength structures of Si by inductively coupled plasma etching using dewetted nanopatterns of Au thin films as masks,” Thin Solid Films519(11), 3792–3797 (2011). [CrossRef]
  18. S. J. Wilson and M. C. Hutley, “The optical properties of ‘Moth eye’ antireflection surfaces,” Opt. Acta (Lond.)29(7), 993–1009 (1982). [CrossRef]
  19. R. Y. Zhang, B. Shao, J. R. Dong, J. C. Zhang, and H. Yang, “Absorption enhancement analysis of crystalline Si thin film solar cells based on broadband antireflection nanocone grating,” J. Appl. Phys.110(11), 113105 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited