OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 3 — Mar. 1, 2012
  • pp: 287–293

Persistent luminescence fading in Sr2MgSi2O7:Eu2+,R3+ materials: a thermoluminescence study

Hermi F. Brito, Jorma Hölsä, Högne Jungner, Taneli Laamanen, Mika Lastusaari, Marja Malkamäki, and Lucas C.V. Rodrigues  »View Author Affiliations

Optical Materials Express, Vol. 2, Issue 3, pp. 287-293 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (761 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The fading of persistent luminescence in Sr2MgSi2O7:Eu2+,R3+ (R: Y, La-Nd, Sm-Lu) was studied combining thermoluminescence (TL) and room temperature (persistent) luminescence measurements to gain more information on the mechanism of persistent luminescence. The TL glow curves showed the main trap signal at ca. 80 °C, corresponding to 0.6 eV as the trap depth, with every R co-dopant. The TL measurements carried out with different irradiation times revealed the general order nature of the TL bands. The results obtained from the deconvolutions of the glow curves allowed the prediction of the fading of persistent luminescence with good accuracy, though only when using the Becquerel decay law.

© 2012 OSA

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(160.2900) Materials : Optical storage materials
(160.5690) Materials : Rare-earth-doped materials
(260.3800) Physical optics : Luminescence
(300.2140) Spectroscopy : Emission

ToC Category:
Fluorescent and Luminescent Materials

Original Manuscript: December 23, 2011
Revised Manuscript: February 3, 2012
Manuscript Accepted: February 6, 2012
Published: February 17, 2012

Virtual Issues
Persistent Phosphors (2012) Optical Materials Express

Hermi F. Brito, Jorma Hölsä, Högne Jungner, Taneli Laamanen, Mika Lastusaari, Marja Malkamäki, and Lucas C.V. Rodrigues, "Persistent luminescence fading in Sr2MgSi2O7:Eu2+,R3+ materials: a thermoluminescence study," Opt. Mater. Express 2, 287-293 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Hölsä, “Persistent luminescence beats the afterglow: 400 years of persistent luminescence,” Electrochem. Soc. Interface18(4), 42–45 (2009).
  2. T. Lin, Z. Tang, Z. Zhang, X. Wang, and J. Zhang, “Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor,” J. Mater. Sci. Lett.20(16), 1505–1506 (2001). [CrossRef]
  3. D. Poelman, N. Avci, and P. F. Smet, “Measured luminance and visual appearance of multi-color persistent phosphors,” Opt. Express17(1), 358–364 (2009). [CrossRef] [PubMed]
  4. H. F. Brito, J. Hassinen, J. Hölsä, H. Jungner, T. Laamanen, M. Lastusaari, M. Malkamäki, J. Niittykoski, P. Novák, and L. C. V. Rodrigues, “Optical energy storage properties of Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials,” J. Therm. Anal. Calorim.105(2), 657–662 (2011). [CrossRef]
  5. J. Hölsä, H. F. Brito, T. Laamanen, M. Lastusaari, M. Malkamäki, and L. C. V. Rodrigues, “Persistent luminescence of Eu3+,Ti3+ doped Y2O2S: A hole trapping mechanism?” in Proc. 16th Int. Conf. Lumin. (ICL’11), Ann Arbor, MI, USA, June 26 – July 1, 2011, pp. 71–72 (2011).
  6. L. C. V. Rodrigues, H. F. Brito, J. Hölsä, R. Stefani, M. C. F. C. Felinto, M. Lastusaari, M. Malkamäki, and L. A. O. Nunes, “Persistent luminescence mechanism of the CdSiO3:Tb3+ phosphors,” in Proc. 16th Int. Conf. Lumin. (ICL’11), Ann Arbor, MI, USA, June 26 – July 1, 2011, pp. 69–70 (2011).
  7. J. M. Carvalho, L. C. V. Rodrigues, J. Hölsä, T. Laamanen, M. Lastusaari, L. A. O. Nunes, M. C. F. C. Felinto, O. L. Malta, and H. F. Brito, “Influence of titanium and lutetium on the persistent luminescence of ZrO2,” Opt. Mater. Express (submitted).
  8. M. Lastusaari, T. Laamanen, M. Malkamäki, K. O. Eskola, A. Kotlov, S. Carlson, E. Welter, H. F. Brito, M. Bettinelli, H. Jungner, and J. Hölsä, “The Bologna Stone: History’s first persistent luminescent material,” Eur. J. Mineral. (to be published).
  9. K. S. Chung, TL Glow Curve Analyzer v. 1.0.3. (Korea Atomic Energy Research Institute and Gyeongsang National University, Korea, 2008).
  10. K. S. Chung, H. S. Choe, J. I. Lee, and J. L. Kim, “A new method for the numerical analysis of thermoluminescence glow curve,” Radiat. Meas.42(4-5), 731–734 (2007). [CrossRef]
  11. R. Chen and S. W. S. McKeever, Theory of Thermoluminescence and Related Phenomena (World Scientific, Singapore, 1997).
  12. A. J. J. Bos, “High sensitivity thermoluminescence dosimetry,” Nucl. Instrum. Methods Phys. Res. B184(1-2), 3–28 (2001). [CrossRef]
  13. C. M. Sunta, W. E. F. Ayta, R. N. Kulkarni, T. M. Piters, and S. Watanabe, “General-order kinetics of thermoluminescence and its physical meaning,” J. Phys. D Appl. Phys.30(8), 1234–1242 (1997). [CrossRef]
  14. E. I. Adirovitch, “La formule de Becquerel et la loi élémentaire du déclin de la luminescence des phosphores cristallins,” J. Phys. Radium17(8-9), 705–707 (1956). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited