OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 3 — Mar. 1, 2012
  • pp: 331–340

Influence of titanium and lutetium on the persistent luminescence of ZrO2

José M. Carvalho, Lucas C. V. Rodrigues, Jorma Hölsä, Mika Lastusaari, Luiz A. O. Nunes, Maria C. F. C. Felinto, Oscar L. Malta, and Hermi F. Brito  »View Author Affiliations

Optical Materials Express, Vol. 2, Issue 3, pp. 331-340 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1476 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Non-doped as well as titanium and lutetium doped zirconia (ZrO2) materials were synthesized via the sol-gel method and structurally characterized with X-ray powder diffraction. The addition of Ti in the zirconia lattice does not change the crystalline structure whilst the Lu doping introduces a small fraction of the tetragonal phase. The UV excitation results in a bright white-blue luminescence at ca. 500 nm for all the materials which emission could be assigned to the Ti3+egt2g transition. The persistent luminescence originates from the same Ti3+ center. The thermoluminescence data shows a well-defined though rather similar defect structures for all the zirconia materials. The kinetics of persistent luminescence was probed with the isothermal decay curve analyses which indicated significant retrapping. The short duration of persistent luminescence was attributed to the quasi-continuum distribution of the traps and to the possibility of shallow traps even below the room temperature.

© 2012 OSA

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(160.2900) Materials : Optical storage materials
(260.3800) Physical optics : Luminescence
(300.2140) Spectroscopy : Emission

ToC Category:
Fluorescent and Luminescent Materials

Original Manuscript: January 3, 2012
Revised Manuscript: February 20, 2012
Manuscript Accepted: February 20, 2012
Published: February 24, 2012

Virtual Issues
Persistent Phosphors (2012) Optical Materials Express

José M. Carvalho, Lucas C. V. Rodrigues, Jorma Hölsä, Mika Lastusaari, Luiz A. O. Nunes, Maria C. F. C. Felinto, Oscar L. Malta, and Hermi F. Brito, "Influence of titanium and lutetium on the persistent luminescence of ZrO2," Opt. Mater. Express 2, 331-340 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. de Wild, A. Meijerink, J. K. Rath, W. G. J. H. M. van Sark, and R. E. I. Schropp, “Towards upconversion for amorphous silicon solar cells,” Sol. Energy Mater. Sol. Cells 94(11), 1919–1922 (2010). [CrossRef]
  2. C. G. Granqvist and V. Wittwer, “Materials for solar energy conversion: An overview,” Sol. Energy Mater. Sol. Cells 54(1-4), 39–48 (1998). [CrossRef]
  3. P. C. Dokko, J. A. Pask, and K. S. Mazdiyasni, “High-temperature mechanical properties of mullite under compression,” J. Am. Ceram. Soc. 60(3-4), 150–155 (1977). [CrossRef]
  4. T. S. Jeon, J. M. White, and D. L. Kwong, “Thermal stability of ultrathin ZrO2 films prepared by chemical vapor deposition on Si(100),” Appl. Phys. Lett. 78(3), 368–370 (2001). [CrossRef]
  5. L. C. V. Rodrigues, R. Stefani, H. F. Brito, M. C. F. C. Felinto, J. Hölsä, M. Lastusaari, T. Laamanen, and M. Malkamäki, “Thermoluminescence and synchrotron radiation studies on the persistent luminescence of BaAl2O4:Eu2+,Dy3+,” J. Solid State Chem. 183(10), 2365–2371 (2010). [CrossRef]
  6. Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang, and D. P. Yu, “Optical properties of the ZnO nanotubes synthesized via vapor phase growth,” Appl. Phys. Lett. 83(9), 1689–1691 (2003). [CrossRef]
  7. T. Aitasalo, P. Dereń, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Stręk, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1-2), 114–122 (2003). [CrossRef]
  8. P. Escribano, B. Julián-López, J. Planelles-Aragó, E. Cordoncillo, B. Viana, and C. Sanchez, “Photonic and nanobiophotonic properties of luminescent lanthanide-doped hybrid organic–inorganic materials,” J. Mater. Chem. 18(1), 23–40 (2007). [CrossRef]
  9. J.-C. G. Bunzli, S. Comby, A.-S. Chauvin, and C. D. B. Vandevyver, “New opportunities for lanthanide luminescence,” J. Rare Earths 25(3), 257–274 (2007). [CrossRef]
  10. F. C. Palilla, A. K. Levine, and M. R. Tomkus, “Fluorescent properties of alkaline earth aluminates of the type MAl2O4 activated by divalent europium,” J. Electrochem. Soc. 115(6), 642–644 (1968). [CrossRef]
  11. M. Yamaga, Y. Ohsumi, T. Nakayama, N. Kashiwagura, N. Kodama, and T. P. J. Han, “Long-lasting phosphorescence in Ce-doped oxides,” J. Mater. Sci. Mater. Electron. 20(S1), 471–475 (2009). [CrossRef]
  12. N. Kodama, Y. Tanii, and M. Yamaga, “Optical properties of long-lasting phosphorescent crystals Ce3+-doped Ca2Al2SiO7 and CaYAl3O7,” J. Lumin. 87-89, 1076–1078 (2000). [CrossRef]
  13. R. C. Garvie, R. H. Hannink, and R. T. Pascoe, “Ceramics steel,” Nature 258(5537), 703–704 (1975). [CrossRef]
  14. P. K. Wright and A. G. Evans, “Mechanisms governing the performance of thermal barrier coatings,” Curr. Opin. Solid State Mater. Sci. 4(3), 255–265 (1999). [CrossRef]
  15. W. C. Li, M. M. McKerns, and B. Fultz, “A Raman spectrometry study of phonon anharmonicity of zirconia at elevated temperatures,” J. Am. Ceram. Soc. 94(1), 224–229 (2011). [CrossRef]
  16. F. Gallino, C. Di Valentin, and G. Pacchioni, “Band gap engineering of bulk ZrO2 by Ti doping,” Phys. Chem. Chem. Phys. 13(39), 17667–17675 (2011). [CrossRef] [PubMed]
  17. S. Shukla, S. Seal, R. Vij, and S. Bandyopadhyay, “Reduced activation energy for grain growth in nanocrystalline yttria-stabilized zirconia,” Nano Lett. 3(3), 397–401 (2003). [CrossRef]
  18. S. Shukla and S. Seal, “Thermodynamic tetragonal phase stability in sol-gel derived nanodomains of pure zirconia,” J. Phys. Chem. B 108(11), 3395–3399 (2004). [CrossRef]
  19. A. S. Foster, V. B. Sulimov, F. L. Gejo, A. L. Shluger, and R. M. Nieminen, “Structure and electrical levels of point defects in monoclinic zirconia,” Phys. Rev. B 64(22), 224108 (2001). [CrossRef]
  20. J. F. Sarver, “Preparation and luminescent properties of Ti-activated zirconia,” J. Electrochem. Soc. 113(2), 124–128 (1966). [CrossRef]
  21. G. M. Phatak, K. Gangadharan, H. Pal, and J. P. Mittal, “Luminescence properties of Ti-doped gem-grade zirconia powders,” Bull. Mater. Sci. 17(2), 163–169 (1994). [CrossRef]
  22. Y. Cong, B. Li, B. Lei, and W. Li, “Long lasting phosphorescent properties of Ti doped ZrO2,” J. Lumin. 126(2), 822–826 (2007). [CrossRef]
  23. L. L. Hench and J. K. West, “The sol-gel process,” Chem. Rev. 90(1), 33–72 (1990). [CrossRef]
  24. C. J. Howard, R. J. Hill, and B. E. Reichert, “Structures of ZrO2 polymorphs at room temperature by high-resolution neutron powder diffraction,” Acta Crystallogr. B 44(2), 116–120 (1988). [CrossRef]
  25. JCPDS, ICDD, 1997, entries 36–0460 (monoclinic ZrO2) and 42–1164 (tetragonal ZrO2).
  26. L. Li, H. K. Yang, B. K. Moon, B. C. Choi, J. H. Jeong, K.-W. Jang, H. S. Lee, and S. S. Yi, “Structure, charge transfer bands and photoluminescence of nanocrystals tetragonal and monoclinic ZrO2:Eu,” J. Nanosci. Nanotechnol. 11(1), 350–357 (2011). [CrossRef] [PubMed]
  27. R. Srinivasan, C. R. Hubbard, B. Cavin, and B. H. Davis, “Factors determining the crystal phases of zirconia powders: A new outlook,” Chem. Mater. 5(1), 27–31 (1993). [CrossRef]
  28. L. H. C. Andrade, S. M. Lima, A. Novatski, A. M. Neto, A. C. Bento, M. L. Baesso, F. C. G. Gandra, Y. Guyot, and G. Boulon, “Spectroscopic assignments of Ti3+ and Ti4+ in titanium-doped OH− free low-silica calcium aluminosilicate glass and role of structural defects on the observed long lifetime and high fluorescence of Ti3+ ions,” Phys. Rev. B 78(22), 224202 (2008). [CrossRef]
  29. L. H. C. Andrade, S. M. Lima, A. Novatski, P. T. Udo, N. G. C. Astrath, A. N. Medina, A. C. Bento, M. L. Baesso, Y. Guyot, and G. Boulon, “Long fluorescence lifetime of Ti3+-doped low silica calcium aluminosilicate glass,” Phys. Rev. Lett. 100(2), 027402 (2008). [CrossRef] [PubMed]
  30. K. S. Chung, H. S. Choe, J. I. Lee, J. L. Kim, and S. Y. Chang, “A computer program for the deconvolution of thermoluminescence glow curves,” Radiat. Prot. Dosimetry 115(1-4), 343–349 (2005). [CrossRef] [PubMed]
  31. K. S. Chung, TL Glow Curve Analyzer v.1.0.3. (Korea Atomic Energy Research Institute and Gyeongsang National University, Korea, 2008).
  32. P. Iacconi, D. Lapraz, and R. Caruba, “Traps and emission centres in thermoluminescent ZrO2,” Phys. Status Solidi A 50(1), 275–283 (1978). [CrossRef]
  33. S. W. S. McKeever, Thermoluminescence of Solids (Cambridge University Press, England, 1985), Chap. 3.3.
  34. T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B 110(10), 4589–4598 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited