OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 5 — May. 1, 2012
  • pp: 526–533

Energy transfer in ZnO-anthracene hybrid structure

Ryoko Shimada, Ben Urban, Mamta Sharma, Akhilesh Singh, Vitaliy Avrutin, Hadis Morkoç, and Arup Neogi  »View Author Affiliations


Optical Materials Express, Vol. 2, Issue 5, pp. 526-533 (2012)
http://dx.doi.org/10.1364/OME.2.000526


View Full Text Article

Enhanced HTML    Acrobat PDF (1005 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Anthracene dispersed in Polyphenylsiloxane (PPS) glass was synthesized on epitaxially grown zinc oxide (ZnO) to realize organic/inorganic hybrid semiconductors for efficient energy transfer. The photoluminescence (PL) from ZnO was modified by the presence of anthracene molecules due to resonant energy transfer. The UV-visible emission from anthracene molecule was also influenced due to resonant coupling with the excitonic and defect bound excitonic states in ZnO. Temperature dependence of PL of the hybrid system showed quenching of the defect bound emission of the ZnO to be due to energy transfer from anthracene. The PL lifetime in ZnO-anthracene/PPS hybrid structure at 4 K is relatively shorter and becomes comparable to the PL lifetimes in ZnO at 77 K. However, at room temperatures the PL lifetime of the hybrid structure is significantly longer than in ZnO and is comparable to the recombination lifetime in anthracene.

© 2012 OSA

OCIS Codes
(250.5230) Optoelectronics : Photoluminescence
(260.2160) Physical optics : Energy transfer

ToC Category:
Fluorescent and Luminescent Materials

History
Original Manuscript: March 20, 2012
Revised Manuscript: April 2, 2012
Manuscript Accepted: April 2, 2012
Published: April 4, 2012

Citation
Ryoko Shimada, Ben Urban, Mamta Sharma, Akhilesh Singh, Vitaliy Avrutin, Hadis Morkoç, and Arup Neogi, "Energy transfer in ZnO-anthracene hybrid structure," Opt. Mater. Express 2, 526-533 (2012)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-2-5-526


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. M. Agranovich, R. Atanasov, and F. Bassani, “Hybrid interface excitons in organic-inorganic quantum wells,” Solid State Commun.92(4), 295–301 (1994). [CrossRef]
  2. G. Heliotis, G. Itskos, R. Murray, M. D. Dawson, I. M. Watson, and D. D. C. Bradley, “Hybrid inorganic/organic semiconductor heterostructures with efficient non-radiative energy transfer,” Adv. Mater. 18(3), 334–338 (2006). [CrossRef]
  3. N. Saito, H. Haneda, T. Sekiguchi, N. Ohashi, I. Sakaguchi, and K. Koumoto, “Low-temperature fabrication of light-emitting Zinc Oxide micropatterns using self-assembled monolayers,” Adv. Mater.14(6), 418–421 (2002). [CrossRef]
  4. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater.4(6), 455–459 (2005). [CrossRef] [PubMed]
  5. R. K. Das, S. Bhat, S. Banerjee, C. Aymonier, A. Loppinet-Serani, P. Terech, U. Maitra, G. Raffy, J.-P. Desvergne, and A. Del Guerzo, “Self-assembled composite nano-materials exploiting a thermo reversible n-acene fibrillar scaffold and organic-capped ZnO nanoparticles,” J. Mater. Chem.21(8), 2740–2750 (2011). [CrossRef]
  6. O. Seitz, L. Caillard, H. M. Nguyen, C. Chiles, Y. J. Chabal, and A. V. Malko, “Optimizing non-radiative energy transfer in hybrid colloidal-nanocrystal/silicon structures by controlled nanopillar architectures for future photovoltaic cells,” Appl. Phys. Lett.100(2), 021902 (2012). [CrossRef]
  7. R. J. Lacowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer-Verlag, 2006).
  8. M. H. Crawford, “LEDs for solid-state lighting: performance challenges and recent advances,” IEEE J. Sel. Top. Quantum Electron.15(4), 1028–1040 (2009). [CrossRef]
  9. J. Y. Tsao, M. E. Coltrin, M. H. Crawford, and J. A. Simmons, “Solid-state lighting: An integrated human factors, technology, and economic perspective,” Proc. IEEE98(7), 1162–1179 (2010). [CrossRef]
  10. H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express19(S4Suppl 4), A991–A1007 (2011). [CrossRef] [PubMed]
  11. H. Morkoç and Ü. Özgür, Zinc Oxide (Wiley-VCH, 2009).
  12. T. K. Sharma and E. Towe, “On ternary nitride substrates for visible semiconductor light-emitters,” Appl. Phys. Lett.96(19), 191105 (2010). [CrossRef]
  13. B. Menaa, M. Takahashi, Y. Tokuda, and T. Yoko, “High dispersion and fluorescence of anthracene doped in polyphenylsiloxane films,” J. Sol-Gel Sci. Technol.39(2), 185–194 (2006). [CrossRef]
  14. B. Menaa, M. Takahashi, Y. Tokuda, and T. Yoko, “High optical quality spin-coated polyphenylsiloxane glass thick films on polyethyleneterephtalate and silica substrates,” Mater. Res. Bull.41(10), 1925–1934 (2006). [CrossRef]
  15. R. Katoh and M. Kotani, “Observation of fluorescence from higher excited states in an anthracene crystal,” Chem. Phys. Lett.201(1-4), 141–144 (1993). [CrossRef]
  16. Y. Gong, T. Andelman, G. F. Neumark, S. O’Brien, and I. L. Kuskovsky, “Origin of defect-related green emission from ZnO nanoparticles: effect of surface modification,” Nanoscale Res. Lett.2(6), 297–302 (2007). [CrossRef]
  17. J. Liu, S. Lee, Y. H. Ahn, J.-Y. Park, and K. H. Koh, “Tailoring the visible photoluminescence of mass-produced ZnO nanowires,” J. Phys. D Appl. Phys.42(9), 095401 (2009). [CrossRef]
  18. A. Teke, Ü. Özgür, S. Dogan, X. Gu, H. Morkoç, B. Nemeth, J. Nause, and H. O. Everitt, “Excitonic fine structure and recombination dynamics in single-crystalline ZnO,” Phys. Rev. B70(19), 195207 (2004). [CrossRef]
  19. X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, W. Xu, X. W. Fan, and X. G. Kong, “Temperature dependence of excitonic luminescence from nanocrystalline ZnO films,” J. Lumin.99(2), 149–154 (2002). [CrossRef]
  20. Y. Zhang, D. J. Chen, and C. T. Lee, “Free exciton emission and dephasing in individual ZnO nanowires,” Appl. Phys. Lett.91(16), 161911 (2007). [CrossRef]
  21. M. Pope, “Charge-transfer exciton state, ionic energy levels, and delayed fluorescence in anthracene,” Mol. Cryst.4(1-4), 183–190 (1968). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited