OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 5 — May. 1, 2012
  • pp: 629–635

Spectral tuning of a three-dimensional photonic-bandgap waveguide signature by silica atomic-layer deposition

Isabelle Staude, Georg von Freymann, and Martin Wegener  »View Author Affiliations

Optical Materials Express, Vol. 2, Issue 5, pp. 629-635 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1392 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Recent progress in three-dimensional sub-micron fabrication has rendered the introduction of waveguide structures into optical three-dimensional photonic bandgap materials possible. However, spectral tuning of the waveguide modes has not been demonstrated so far. Here, we use atomic-layer deposition of amorphous silica to tune the spectral position of an air-core defect waveguide in a three-dimensional silicon woodpile photonic crystal by 225 nm in wavelength. The measured spectral positions of the waveguide signature are in very good agreement with numerical calculations.

© 2012 OSA

OCIS Codes
(160.5293) Materials : Photonic bandgap materials
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Materials for Integrated Optics

Original Manuscript: January 25, 2012
Revised Manuscript: March 15, 2012
Manuscript Accepted: April 6, 2012
Published: April 11, 2012

Isabelle Staude, Georg von Freymann, and Martin Wegener, "Spectral tuning of a three-dimensional photonic-bandgap waveguide signature by silica atomic-layer deposition," Opt. Mater. Express 2, 629-635 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Bayindir, E. Ozbay, B. Temelkuran, M. M. Sigalas, C. M. Soukoulis, R. Biswas, and K. M. Ho, “Guiding, bending, and splitting of electromagnetic waves in highly confined photonic crystal waveguides,” Phys. Rev. B63, 081107 (2001). [CrossRef]
  2. M. L. Povinelli, S. G. Johnson, S. Fan, and J. D. Joannopoulos, “Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap,” Phys. Rev. B64, 075313 (2001). [CrossRef]
  3. Z.-Y. Li and K. M. Ho, “Waveguides in three-dimensional layer-by-layer photonic crystals,” J. Opt. Soc. Am. B20, 801–809 (2003). [CrossRef]
  4. A. Chutinan, S. John, and O. Toader, “Diffractionless Flow of Light in All-Optical Microchips,” Phys. Rev. Lett.90, 123901 (2003). [CrossRef] [PubMed]
  5. A. Chutinan and S. John, “Light localization for broadband integrated optics in three dimensions,” Phys. Rev. B72, 161316 (2005). [CrossRef]
  6. B. M. Cowan, “Three-dimensional dielectric photonic crystal structures for laser-driven acceleration,” Phys. Rev. Spec. Top. Accel. Beams11, 011301 (2008). [CrossRef]
  7. I. Staude, C. McGuinness, A. Frölich, R. L. Byer, E. Colby, and M. Wegener, “Waveguides in three-dimensional photonic bandgap materials for particle-accelerator on a chip architectures,” Opt. Express20,5607–5612 (2012). [CrossRef]
  8. S. A. Rinne, F. García-Santamaría, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics2,52–56 (2008). [CrossRef]
  9. S. Kawashima, K. Ishizaki, and S. Noda, “Light propagation in three-dimensional photonic crystals,” Opt. Express18,386–392 (2010). [CrossRef]
  10. I. Staude, G. von Freymann, S. Essig, K. Busch, and M. Wegener, “Waveguides in three-dimensional photonic-band-gap materials by direct laser writing and silicon double inversion,” Opt. Lett.36,67–69 (2011). [CrossRef]
  11. A. Tandaechanurat, S. Ishida, K. Aoki, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Demonstration of high-Q (>8600) three-dimensional photonic crystal nanocavity embedding quantum dots,” Appl. Phys. Lett.94,171115 (2009). [CrossRef]
  12. G. Subramania, Y.-J. Lee, and A. J. Fischer, “Silicon-Based Near-Visible Logpile Photonic Crystal,” Adv. Mater.22,4180–4185 (2010). [CrossRef]
  13. G. Subramania, Q. Li, Y.-J. Lee, J. J. Figiel, G. T. Wang, and A. J. Fischer, “Gallium Nitride Based Logpile Photonic Crystals,” Nano Lett.11,4591–4596 (2011). [CrossRef]
  14. N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. A. Ozin, “New Route to Three-Dimensional Photonic Bandgap Materials: Silicon Double Inversion of Polymer Templates,” Adv. Mater.18,457–460 (2006). [CrossRef]
  15. C. J. Chen, C. A. Husko, I. Meric, K. L. Shepard, C. W. Wong, W. M. J. Green, Y. A. Vlasov, and S. Assefa, “Deterministic tuning of slow-light in photonic-crystal waveguides through the C and L bands by atomic layer deposition,” Appl. Phys. Lett.96,081107 (2010). [CrossRef]
  16. S. Kiravittaya, H. S. Lee, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Tuning optical modes in slab photonic crystal by atomic layer deposition and laser-assisted oxidation,” Adv. Mater.109,053115 (2011).
  17. Y. Lin and P. R. Herman, “Effect of structural variation on the photonic band gap in woodpile photonic crystal with body-centered-cubic symmetry,” J. Appl. Phys.98,063104 (2005). [CrossRef]
  18. I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch, G. von Freymann, and M. Wegener, “Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths,” Opt. Lett.35, 1094–1096 (2010). [CrossRef] [PubMed]
  19. D. J. Ehrlich and J. Melngailis, “Fast room-temperature growth of SiO2 films by molecular-layer dosing,” Appl. Phys. Lett.58,2675–2677 (1991). [CrossRef]
  20. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express8,173–190 (2001). [CrossRef]
  21. A. Frölich and M. Wegener, “Spectroscopic characterization of highly doped ZnO films grown by atomic-layer deposition for three-dimensional infrared metamaterials,” Opt. Mater. Express1,883–889 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited