OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 5 — May. 1, 2012
  • pp: 636–643

Near-infrared quantum splitting in Ho3+:LaF3 nanocrystals embedded germanate glass ceramic

W. J. Zhang, D. C. Yu, J. P. Zhang, Q. Qian, S. H. Xu, Z. M. Yang, and Q. Y. Zhang  »View Author Affiliations


Optical Materials Express, Vol. 2, Issue 5, pp. 636-643 (2012)
http://dx.doi.org/10.1364/OME.2.000636


View Full Text Article

Enhanced HTML    Acrobat PDF (984 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on a sequential two-step near-infrared quantum splitting in Ho3+-doped germanate glass ceramics (GC). The formation of LaF3 nanocrystals is confirmed by X-ray diffraction and transmission electron microscopy analysis. Emission of two NIR photons at 1013 and 1190 nm for one incident photon absorption within the 300-560 nm region has been demonstrated by static and dynamic photoemission and excitation spectroscopy. Using the spectroscopic parameters calculated from Judd-Ofelt theory, the quantum efficiency of Ho3+ in GC sample is estimated to be approximately 110%.

© 2012 OSA

OCIS Codes
(140.4480) Lasers and laser optics : Optical amplifiers
(160.4670) Materials : Optical materials
(160.5690) Materials : Rare-earth-doped materials
(300.6340) Spectroscopy : Spectroscopy, infrared

ToC Category:
Nonlinear Optical Materials

History
Original Manuscript: February 8, 2012
Revised Manuscript: April 6, 2012
Manuscript Accepted: April 9, 2012
Published: April 13, 2012

Citation
W. J. Zhang, D. C. Yu, J. P. Zhang, Q. Qian, S. H. Xu, Z. M. Yang, and Q. Y. Zhang, "Near-infrared quantum splitting in Ho3+:LaF3 nanocrystals embedded germanate glass ceramic," Opt. Mater. Express 2, 636-643 (2012)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-2-5-636


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Ronda, “Luminescent materials with quantum efficiency larger than 1, status and prospects,” J. Lumin.100(1-4), 301–305 (2002). [CrossRef]
  2. S. Kück, I. Sokólska, M. Henke, T. Scheffler, and E. Osiac, “Emission and excitation characteristics and internal quantum efficiencies of vacuum-ultraviolet excited Pr3+-doped fluoride compounds,” Phys. Rev. B71(16), 165112 (2005). [CrossRef]
  3. Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci.55(5), 353–427 (2010). [CrossRef]
  4. D. L. Dexter, “Possibility of luminescent quantum yields greater than unity,” Phys. Rev.108(3), 630–633 (1957). [CrossRef]
  5. W. W. Piper, J. A. DeLuca, and F. S. Ham, “Cascade fluorescent decay in Pr3+-doped fluorides: achievement of a quantum yield greater than unity for emission of visible light,” J. Lumin.8(4), 344–348 (1974). [CrossRef]
  6. J. L. Sommerdijk, A. Bril, and A. W. de Jager, “Two photon luminescence with ultraviolet excitation of trivalent praseodymium,” J. Lumin.8(4), 341–343 (1974). [CrossRef]
  7. R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, “Visible quantum cutting in LiGdF4:Eu3+ through downconversion,” Science283(5402), 663–666 (1999). [CrossRef] [PubMed]
  8. R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, “Visible quantum cutting in Eu3+-doped gadolinium fluorides via downconversion,” J. Lumin.82(2), 93–104 (1999). [CrossRef]
  9. T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys.92(3), 1668–1674 (2002). [CrossRef]
  10. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of pn junction solar cells,” J. Appl. Phys.32(3), 510–519 (1961). [CrossRef]
  11. B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-Infrared quantum cutting for photovoltaics,” Adv. Mater.21(30), 3073–3077 (2009). [CrossRef]
  12. P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+,” Phys. Rev. B71(1), 014119 (2005). [CrossRef]
  13. D. Q. Chen, Y. L. Yu, Y. S. Wang, P. Huang, and F. Y. Weng, “Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+:TbF3 nanocrystals embedded glass ceramics,” J. Phys. Chem. C113(16), 6406–6410 (2009). [CrossRef]
  14. Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative downconversion in GdAl3(BO3)4: RE3+, Yb3+ (RE = Pr, Tb, and Tm),” Appl. Phys. Lett.91(5), 051903 (2007). [CrossRef]
  15. D. C. Chen, Y. S. Wang, Y. L. Yu, P. Huang, and F. Y. Weng, “Near-infrared quantum cutting in transparent nanostructured glass ceramics,” Opt. Lett.33(16), 1884–1886 (2008). [CrossRef] [PubMed]
  16. S. Ye, B. Zhu, J. Luo, J. X. Chen, G. Lakshminarayana, and J. R. Qiu, “Enhanced cooperative quantum cutting in Tm3+- Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express16(12), 8989–8994 (2008). [CrossRef] [PubMed]
  17. J. J. Eilers, D. Biner, J. T. van Wijngaarden, K. Krämer, H.-U. Güdel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+-Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett.96(15), 151106 (2010). [CrossRef]
  18. J.-M. Meijer, L. Aarts, B. M. van der Ende, T. J. H. Vlugt, and A. Meijerink, “Downconversion for solar cells in YF3: Nd3+, Yb3+,” Phys. Rev. B81(3), 035107 (2010). [CrossRef]
  19. D. Q. Chen, Y. L. Yu, H. Lin, P. Huang, Z. F. Shan, and Y. S. Wang, “Ultraviolet-blue to near-infrared downconversion of Nd3+-Yb3+ couple,” Opt. Lett.35(2), 220–222 (2010). [CrossRef] [PubMed]
  20. H. Lin, D. Q. Chen, Y. L. Yu, A. P. Yang, and Y. S. Wang, “Near-infrared quantum cutting in Ho3+/Yb3+ codoped nanostructured glass ceramic,” Opt. Lett.36(6), 876–878 (2011). [CrossRef] [PubMed]
  21. D. C. Yu, X. Y. Huang, S. Ye, M. Y. Peng, Q. Y. Zhang, and L. Wondraczek, “Three-photon near-infrared quantum splitting in β-NaYF4: Ho3+,” Appl. Phys. Lett.99(16), 161904 (2011). [CrossRef]
  22. B. R. Judd, “Optical Absorption Intensities of Rare-Earth Ions,” Phys. Rev.127(3), 750–761 (1962). [CrossRef]
  23. G. S. Ofelt, “Intensities of Crystal Spectra of Rare-Earth Ions,” J. Chem. Phys.37(3), 511–520 (1962). [CrossRef]
  24. B. Zhou, D. L. Yang, H. Lin, and E. Y. B. Pun, “Emissions of 1.20 and 1.38 µm from Ho3+-doped lithium-barium-bismuth-lead oxide glass for optical amplifications,” J. Non-Cryst. Solids357(11-13), 2468–2471 (2011). [CrossRef]
  25. T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B1(7), 2961–2969 (1970). [CrossRef]
  26. M. J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3,” Phys. Rev.157(2), 262–272 (1967). [CrossRef]
  27. D. C. Yu, S. Ye, M. Y. Peng, Q. Y. Zhang, J. R. Qiu, J. Wang, and L. Wondraczek, “Efficient near-infrared downconversion in GdVO4:Dy3+ phosphors for enhancing the photo-response of solar cells,” Sol. Energy Mater. Sol. Cells95(7), 1590–1593 (2011). [CrossRef]
  28. H. H. Caspers, H. E. Rast, and J. L. Fry, “Absorption, fluorescence, and energy levels of Ho3+ in LaF3,” J. Chem. Phys.53(8), 3208–3216 (1970). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited