OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 6 — Jun. 1, 2012
  • pp: 814–824

Graphene-based functional materials for organic solar cells [Invited]

Zhe Pan, Huili Gu, Meng-Ting Wu, Yongxi Li, and Yu Chen  »View Author Affiliations


Optical Materials Express, Vol. 2, Issue 6, pp. 814-824 (2012)
http://dx.doi.org/10.1364/OME.2.000814


View Full Text Article

Enhanced HTML    Acrobat PDF (1085 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Graphene is of great interest for future applications in organic photovoltaics (OPVs) due to its high three-dimensional aspect ratio, large specific surface area, remarkable optical transmittance, extraordinary thermal response, excellent electron/hole transport properties, superior mechanical stiffness and flexibility. Graphene-based functional materials can be used as transparent window/counter electrodes, interface layers, hole/electron transport materials and can also function as buffer layers to retard charge recombination in OPVs. Future work would focus on the following aspects: (a) design and preparation of novel graphene-based functional materials with good stability, high transparency and excellent conductivity for OPVs; (b) development of the new approaches that constitute a significant advance toward the production of graphene-based transparent conductive electrodes in OPVs; (c) evaluation on the long terms stability of devices with GO based modifying layers; (d) delicate control of unique graphene nanostructures; and (e) interface engineering of the graphene in terms of modifying its work function and surface free energy.

© 2012 OSA

OCIS Codes
(160.0160) Materials : Materials
(250.0250) Optoelectronics : Optoelectronics
(310.1860) Thin films : Deposition and fabrication
(350.6050) Other areas of optics : Solar energy
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Photovoltaics

History
Original Manuscript: April 2, 2012
Manuscript Accepted: April 24, 2012
Published: May 18, 2012

Virtual Issues
Nanocarbon for Photonics and Optoelectronics (2012) Optical Materials Express

Citation
Zhe Pan, Huili Gu, Meng-Ting Wu, Yongxi Li, and Yu Chen, "Graphene-based functional materials for organic solar cells [Invited]," Opt. Mater. Express 2, 814-824 (2012)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-2-6-814


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Wu, W. Pisula, and K. Müllen, “Graphenes as potential material for electronics,” Chem. Rev.107(3), 718–747 (2007). [CrossRef] [PubMed]
  2. F. Chen and N. J. Tao, “Electron transport in single molecules: from benzene to graphene,” Acc. Chem. Res.42(3), 429–438 (2009). [CrossRef] [PubMed]
  3. D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, “The chemistry of graphene oxide,” Chem. Soc. Rev.39(1), 228–240 (2009). [CrossRef] [PubMed]
  4. S. Park and R. S. Ruoff, “Chemical methods for the production of graphenes,” Nat. Nanotechnol.4(4), 217–224 (2009). [CrossRef] [PubMed]
  5. Y. Chen, B. Zhang, G. Liu, X. Zhuang, and E.-T. Kang, “Graphene and its derivatives: switching ON and OFF?” Chem. Soc. Rev. (to be published), DOI: . [CrossRef]
  6. P. P. Li, Y. Chen, J. Zhu, M. Feng, X. Zhuang, Y. Lin, and H. Zhan, “Charm-bracelet-type poly(N-vinylcarbazole) functionalized with reduced graphene oxide for broadband optical limiting,” Chem. Eur. J.17(3), 780–785 (2011). [CrossRef] [PubMed]
  7. B. Zhang, Y. Chen, G. Liu, L.-Q. Xu, J. Chen, C.-X. Zhu, K.-G. Neoh, and E.-T. Kang, “Push-pull archetype of reduced graphene oxide functionalized with polyfluorene for nonvolatile rewritable memory,” J. Polym. Sci. A Polym. Chem.50(2), 378–387 (2012). [CrossRef]
  8. B. Zhang, G. Liu, Y. Chen, L. J. Zeng, C.-X. Zhu, K.-G. Neoh, C. Wang, and E.-T. Kang, “Conjugated polymer-grafted reduced graphene oxide for nonvolatile rewritable memory,” Chem. Eur. J.17(49), 13646–13652 (2011). [CrossRef] [PubMed]
  9. V. Yong and J. M. Tour, “Theoretical efficiency of nanostructured graphene-based photovoltaics,” Small6(2), 313–318 (2010). [CrossRef] [PubMed]
  10. D. Zhang, W. C. H. Choy, C. C. D. Wang, X. Li, L. Fan, K. Wang, and H. Zhu, “Polymer solar cells with gold nanoclusters decorated multi-layer graphene as transparent electrode,” Appl. Phys. Lett.99(22), 223302 (2011). [CrossRef]
  11. Z. Liu, D. He, Y. Wang, H. Wu, and J. Wang, “Graphene doping of P3HT:PCBM photovoltaic devices,” Synth. Met.160(9-10), 1036–1039 (2010). [CrossRef]
  12. J. Wang, Y. Wang, D. He, Z. Liu, H. Wu, H. Wang, P. Zhou, and M. Fu, “Polymer bulk heterojunction photovoltaic devices based on complex donors and solution-processable functionalized graphene oxide,” Sol. Energy Mater. Sol. Cells96, 58–65 (2012). [CrossRef]
  13. Z. Liu, L. Liu, H. Li, Q. Dong, S. Yao, A. B. Kidd, X. Zhang, J. Li, and W. Tian, “Green polymer solar cell based on water-soluble poly [3-(potassium-6- hexanoate) thiophene-2,5-diyl] and aqueous-dispersible noncovalent functionalized graphene sheets,” Sol. Energy Mater. Sol. Cells97, 28–33 (2012). [CrossRef]
  14. Z. Wang, C. P. Puls, N. E. Staley, Y. Zhang, A. Todd, J. Xu, C. A. Howsare, M. J. Hollander, J. A. Robinson, and Y. Liu, “Technology ready use of single layer graphene as a transparent electrode for hybrid photovoltaic devices,” Physica E44(2), 521–524 (2011). [CrossRef]
  15. J. Kim, V. C. Tung, and J. Huang, “Water processable graphene oxide: single walled carbon nanotube composite as anode modifier for polymer solar cells,” Adv. Energy Mater.1(6), 1052–1057 (2011). [CrossRef]
  16. J. M. Yun, J. S. Yeo, J. Kim, H. G. Jeong, D. Y. Kim, Y. J. Noh, S. S. Kim, B. C. Ku, and S. I. Na, “Solution-processable reduced graphene oxide as a novel alternative to PEDOT:PSS hole transport layers for highly efficient and stable polymer solar cells,” Adv. Mater. (Deerfield Beach Fla.)23(42), 4923–4928 (2011). [CrossRef] [PubMed]
  17. L. Valentini, M. Cardinali, S. Bittolo Bon, D. Bagnis, R. Verdejo, M. A. Lopez-Manchado, and J. M. Kenny, “Use of butylamine modified graphene sheets in polymer solar cells,” J. Mater. Chem.20(5), 995–1000 (2010). [CrossRef]
  18. G. Kalita, M. Matsushima, H. Uchida, K. Wakita, and M. Umeno, “Graphene constructed carbon thin films as transparent electrodes for solar cell applications,” J. Mater. Chem.20(43), 9713–9717 (2010). [CrossRef]
  19. D. Yu, K. Park, M. Durstock, and L. Dai, “Fullerene-grafted graphene for efficient bulk heterojunction polymer photovoltaic devices,” J. Phys. Chem. Lett.2(10), 1113–1118 (2011). [CrossRef]
  20. S. S. Li, K. H. Tu, C. C. Lin, C. W. Chen, and M. Chhowalla, “Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells,” ACS Nano4(6), 3169–3174 (2010). [CrossRef] [PubMed]
  21. Y. Y. Lee, K. H. Tu, C. C. Yu, S. S. Li, J. Y. Hwang, C. C. Lin, K. H. Chen, L. C. Chen, H. L. Chen, and C. W. Chen, “Top laminated graphene electrode in a semitransparent polymer solar cell by simultaneous thermal annealing/releasing method,” ACS Nano5(8), 6564–6570 (2011). [CrossRef] [PubMed]
  22. C. M. Hill, Y. Zhu, and S. Pan, “Fluorescence and electroluminescence quenching evidence of interfacial charge transfer in poly (3-hexylthiophene): graphene oxide bulk heterojunction photovoltaic devices,” ACS Nano5(2), 942–951 (2011). [CrossRef] [PubMed]
  23. Q. Liu, Z. Liu, X. Zhang, L. Yang, N. Zhang, G. Pan, S. Yin, Y. Chen, and J. Wei, “Polymer photovoltaic cells based on solution-processable graphene and P3HT,” Adv. Funct. Mater.19(6), 894–904 (2009). [CrossRef]
  24. Z. Liu, Q. Liu, Y. Huang, Y. Ma, S. Yin, X. Zhang, W. Sun, and Y. Chen, “Organic photovoltaic devices based on a novel acceptor material: graphene,” Adv. Mater. (Deerfield Beach Fla.)20(20), 3924–3930 (2008). [CrossRef]
  25. D. Yu, Y. Yang, M. Durstock, J. B. Baek, and L. Dai, “Soluble P3HT-grafted graphene for efficient bilayer-heterojunction photovoltaic devices,” ACS Nano4(10), 5633–5640 (2010). [CrossRef] [PubMed]
  26. Y. Li, Y. Hu, Y. Zhao, G. Shi, L. Deng, Y. Hou, and L. Qu, “An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics,” Adv. Mater. (Deerfield Beach Fla.)23(6), 776–780 (2011). [CrossRef] [PubMed]
  27. Y. Li, Z. Pan, Y. Fu, Y. Chen, Z. Xie, and B. Zhang, “Soluble reduced graphene oxide functionalized with conjugated polymer for heterojunction solar cells,” J. Polym. Sci. A Polym. Chem.50(9), 1663–1671 (2012). [CrossRef]
  28. E. Kymakis, E. Stratakis, M. M. Stylianakis, E. Koudoumas, and C. Fotakis, “Spin coated graphene films as the transparent electrode in organic photovoltaic devices,” Thin Solid Films520(4), 1238–1241 (2011). [CrossRef]
  29. Y. Y. Choi, S. J. Kang, H.-K. Kim, W. M. Choi, and S. I. Na, “Multilayer graphene films as transparent electrodes for organic photovoltaic devices,” Sol. Energy Mater. Sol. Cells96, 281–285 (2012). [CrossRef]
  30. M. Choe, B. H. Lee, G. Jo, J. Park, W. Park, S. Lee, W. K. Hong, M. J. Seong, Y. H. Kahng, K. Lee, and T. Lee, “Efficient bulk-heterojunction photovoltaic cells with transparent multi-layer graphene electrodes,” Org. Electron.11(11), 1864–1869 (2010). [CrossRef]
  31. I. P. Murray, S. J. Lou, L. J. Cote, S. Loser, C. J. Kadleck, T. Xu, J. M. Szarko, B. S. Rolczynski, J. E. Johns, J. Huang, L. Yu, L. X. Chen, T. J. Marks, and M. C. Hersam, “Graphene oxide interlayers for robust, high-efficiency organic photovoltaics,” J. Phys. Chem. Lett.2(24), 3006–3012 (2011). [CrossRef]
  32. J. S. Moon, J. K. Lee, S. N. Cho, J. Y. Byun, and A. J. Heeger, ““Columnlike” structure of the cross-sectional morphology of bulk heterojunction materials,” Nano Lett.9(1), 230–234 (2009). [CrossRef] [PubMed]
  33. K. Yang, C. Xu, L. Huang, L. Zou, and H. Wang, “Hybrid nanostructure heterojunction solar cells fabricated using vertically aligned ZnO nanotubes grown on reduced graphene oxide,” Nanotechnology22(40), 405401 (2011). [CrossRef] [PubMed]
  34. H. Bi, F. Huang, J. Liang, X. Xie, and M. Jiang, “Transparent conductive graphene films synthesized by ambient pressure chemical vapor deposition used as the front electrode of CdTe solar cells,” Adv. Mater. (Deerfield Beach Fla.)23(28), 3202–3206 (2011). [CrossRef] [PubMed]
  35. J. Liang, H. Bi, D. Wan, and F. Huang, “Novel Cu nanowires/graphene as the back contact for CdTe solar cells,” Adv. Funct. Mater.22(6), 1267–1271 (2012). [CrossRef]
  36. Y. Ye, Y. Dai, L. Dai, Z. Shi, N. Liu, F. Wang, L. Fu, R. Peng, X. Wen, Z. Chen, Z. Liu, and G. Qin, “High-performance single CdS nanowire (nanobelt) Schottky junction solar cells with Au/graphene Schottky electrodes,” ACS Appl. Mater. Interfaces2(12), 3406–3410 (2010). [CrossRef] [PubMed]
  37. Y. Ye, L. Gan, L. Dai, Y. Dai, X. Guo, H. Meng, B. Yu, Z. Shi, K. Shang, and G. Qin, “A simple and scalable graphene patterning method and its application in CdSe nanobelt/graphene Schottky junction solar cells,” Nanoscale3(4), 1477–1481 (2011). [CrossRef] [PubMed]
  38. Y.-M. Sung, F.-C. Hsu, D.-Y. Wang, I.-S. Wang, C.-C. Chen, H.-C. Liao, W.-F. Su, and Y.-F. Chen, “Enhanced charge extraction in inverted hybrid photovoltaic cells assisted by graphene nanoflakes,” J. Mater. Chem.21(43), 17462–17467 (2011). [CrossRef]
  39. J. Chen, F. Xu, J. Wu, K. Qasim, Y. Zhou, W. Lei, L. T. Sun, and Y. Zhang, “Flexible photovoltaic cells based on a graphene-CdSe quantum dot nanocomposite,” Nanoscale4(2), 441–443 (2012). [CrossRef] [PubMed]
  40. L. Zhang, L. Fan, Z. Li, E. Shi, X. Li, H. Li, C. Ji, Y. Jia, J. Wei, K. Wang, H. Zhu, D. Wu, and A. Cao, “Graphene–CdSe nanobelt solar cells with Tunable Configurations,” Nano Res.4(9), 891–900 (2011). [CrossRef]
  41. J. G. Radich, R. Dwyer, and P. V. Kamat, “Cu2S reduced graphene oxide composite for high-efficiency quantum dot solar cells. Overcoming the redox limitations of S2-/Sn2- at the Counter Electrode,” J. Phys. Chem. Lett.2(19), 2453–2460 (2011). [CrossRef]
  42. V. Gupta, N. Chaudhary, R. Srivastava, G. D. Sharma, R. Bhardwaj, and S. Chand, “Luminscent graphene quantum dots for organic photovoltaic devices,” J. Am. Chem. Soc.133(26), 9960–9963 (2011). [CrossRef] [PubMed]
  43. M. S. Ryu and J. Jang, “Effect of solution processed graphene oxide/nickel oxide bi-layer on cell performance of bulk-heterojunction organic photovoltaic,” Sol. Energy Mater. Sol. Cells95(10), 2893–2896 (2011). [CrossRef]
  44. H. Park, P. R. Brown, V. Bulović, and J. Kong, “Graphene as transparent conducting electrodes in organic photovoltaics: studies in graphene morphology, hole transporting layers, and counter electrodes,” Nano Lett.12(1), 133–140 (2012). [CrossRef] [PubMed]
  45. Y. Wang, S. W. Tong, X. F. Xu, B. Özyilmaz, and K. P. Loh, “Interface engineering of layer-by-layer stacked graphene anodes for high-performance organic solar cells,” Adv. Mater. (Deerfield Beach Fla.)23(13), 1514–1518 (2011). [CrossRef] [PubMed]
  46. S. W. Tong, Y. Wang, Y. Zheng, M. F. Ng, and K. P. Loh, “Graphene intermediate layer in tandem organic photovoltaic cells,” Adv. Funct. Mater.21(23), 4430–4435 (2011). [CrossRef]
  47. Z. Liu, J. Li, Z. H. Sun, G. Tai, S. P. Lau, and F. Yan, “The application of highly doped single-layer graphene as the top electrodes of semitransparent organic solar cells,” ACS Nano6(1), 810–818 (2012). [CrossRef] [PubMed]
  48. Z. Yin, S. Sun, T. Salim, S. Wu, X. Huang, Q. He, Y. M. Lam, and H. Zhang, “Organic photovoltaic devices using highly flexible reduced graphene oxide films as transparent electrodes,” ACS Nano4(9), 5263–5268 (2010). [CrossRef] [PubMed]
  49. University of Southern California, “Graphene organic photovoltaics, or, will T-shirts soon power cell phones,” (2010). http://viterbi.usc.edu/news/news/2010/graphene-organic-photovoltaics.htm .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited