OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 6 — Jun. 1, 2012
  • pp: 839–848

Carbon nanotube arrays based high-performance infrared photodetector [Invited]

Qingsheng Zeng, Sheng Wang, Leijing Yang, Zhenxing Wang, Tian Pei, Zhiyong Zhang, Lian-Mao Peng, Weiwei Zhou, Jie Liu, Weiya Zhou, and Sishen Xie  »View Author Affiliations


Optical Materials Express, Vol. 2, Issue 6, pp. 839-848 (2012)
http://dx.doi.org/10.1364/OME.2.000839


View Full Text Article

Enhanced HTML    Acrobat PDF (1583 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The carbon nanotubes (CNTs) are an ideal material for infrared applications due to its excellent electronic and optoelectronic properties, suitable bandgap, mechanical and chemical stabilities. In this paper, we demonstrate a photovoltaic infrared detector which is based on aligned single-walled CNT (SWCNT) arrays. The device is fabricated by asymmetrically contacting the two ends of the SWCNT arrays with Pd and Sc of different work functions, which are known to form ohmic contacts with the valence and conduction bands of semiconducting SWCNTs respectively. The device is characterized at room temperature, exhibiting excellent diode characteristics, high responsivity of 9.87 × 10−5 A/W and infrared spectral detectivity of 1.09 × 107 cmHz1/2/W. The demonstration of the SWCNT arrays based infrared detector which is fabricated using a doping-free process paves the way to applications of CNT in such field as high-performance infrared sensors.

© 2012 OSA

OCIS Codes
(040.3060) Detectors : Infrared
(040.5160) Detectors : Photodetectors
(040.5350) Detectors : Photovoltaic
(230.5170) Optical devices : Photodiodes
(160.4236) Materials : Nanomaterials

ToC Category:
Detector Materials

History
Original Manuscript: March 23, 2012
Revised Manuscript: April 20, 2012
Manuscript Accepted: April 24, 2012
Published: May 23, 2012

Virtual Issues
Nanocarbon for Photonics and Optoelectronics (2012) Optical Materials Express

Citation
Qingsheng Zeng, Sheng Wang, Leijing Yang, Zhenxing Wang, Tian Pei, Zhiyong Zhang, Lian-Mao Peng, Weiwei Zhou, Jie Liu, Weiya Zhou, and Sishen Xie, "Carbon nanotube arrays based high-performance infrared photodetector [Invited]," Opt. Mater. Express 2, 839-848 (2012)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-2-6-839


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College, London, 1998).
  2. Ph. Avouris, M. Freitag, and V. Perebeinos, “Carbon-nanotube photonics and optoelectronics,” Nat. Photonics2(6), 341–350 (2008). [CrossRef]
  3. T. Dürkop, S. A. Getty, E. Cobas, and M. S. Fuhrer, “Extraordinary mobility in semiconducting carbon nanotubes,” Nano Lett.4(1), 35–39 (2004). [CrossRef]
  4. Z. Zhong, N. M. Gabor, J. E. Sharping, A. L. Gaeta, and P. L. McEuen, “Terahertz time-domain measurement of ballistic electron resonance in a single-walled carbon nanotube,” Nat. Nanotechnol.3(4), 201–205 (2008). [CrossRef] [PubMed]
  5. L. Prechtel, L. Song, S. Manus, D. Schuh, W. Wegscheider, and A. W. Holleitner, “Time-resolved picosecond photocurrents in contacted carbon nanotubes,” Nano Lett.11(1), 269–272 (2011). [CrossRef] [PubMed]
  6. M. E. Itkis, F. Borondics, A. Yu, and R. C. Haddon, “Bolometric infrared photoresponse of suspended single-walled carbon nanotube films,” Science312(5772), 413–416 (2006). [CrossRef] [PubMed]
  7. A. Rogalski, “Infrared detectors: status and trends,” Prog. Quantum Electron.27(2-3), 59–210 (2003). [CrossRef]
  8. F. Rao, X. Liu, T. Li, Y. Zhou, and Y. Wang, “The synthesis and fabrication of horizontally aligned single-walled carbon nanotubes suspended across wide trenches for infrared detecting application,” Nanotechnology20(5), 055501 (2009). [CrossRef] [PubMed]
  9. R. Lu, Z. Li, G. Xu, and J. Z. Wu, “Suspending single-wall carbon nanotube thin film infrared bolometers on microchannels,” Appl. Phys. Lett.94(16), 163110 (2009). [CrossRef]
  10. L. Xiao, Y. Zhang, Y. Wang, K. Liu, Z. Wang, T. Li, Z. Jiang, J. Shi, L. Liu, Q. Q. Li, Y. Zhao, Z. Feng, S. S. Fan, and K. L. Jiang, “A polarized infrared thermal detector made from super-aligned multiwalled carbon nanotube films,” Nanotechnology22(2), 025502 (2011). [CrossRef] [PubMed]
  11. B. C. St-Antoine, D. Ménard, and R. Martel, “Single-walled carbon nanotube thermopile for broadband light detection,” Nano Lett.11(2), 609–613 (2011). [CrossRef] [PubMed]
  12. M. Freitag, Y. Martin, J. A. Misewich, R. Martel, and Ph. Avouris, “Photoconductivity of single carbon nanotubes,” Nano Lett.3(8), 1067–1071 (2003). [CrossRef]
  13. J. U. Lee, “Photovoltaic effect in ideal carbon nanotube diodes,” Appl. Phys. Lett.87(7), 073101 (2005). [CrossRef]
  14. C. H. Liu, C. C. Wu, and Z. H. Zhong, “A fully tunable single-walled carbon nanotube diode,” Nano Lett.11(4), 1782–1785 (2011). [CrossRef] [PubMed]
  15. D. Abdula and M. Shim, “Performance and photovoltaic response of polymer-doped carbon nanotube p-n diodes,” ACS Nano2(10), 2154–2159 (2008). [CrossRef] [PubMed]
  16. C. Chen, Y. Lu, E. S. Kong, Y. Zhang, and S. T. Lee, “Nanowelded carbon-nanotube-based solar microcells,” Small4(9), 1313–1318 (2008). [CrossRef] [PubMed]
  17. S. Wang, Z. Y. Zhang, L. Ding, X. L. Liang, J. Shen, H. L. Xu, Q. Chen, R. L. Cui, Y. Li, and L.-M. Peng, “A doping-free carbon nanotube CMOS inverter-based bipolar diode and ambipolar transistor,” Adv. Mater.20(17), 3258–3262 (2008). [CrossRef]
  18. S. Wang, L. H. Zhang, Z. Y. Zhang, L. Ding, Q. S. Zeng, Z. X. Wang, X. L. Liang, M. Gao, J. Shen, H. L. Xu, Q. Chen, R. L. Cui, Y. Li, and L.-M. Peng, “Photovoltaic effects in asymmetrically contacted CNT barrier-free bipolar diode,” J. Phys. Chem. C113(17), 6891–6893 (2009). [CrossRef]
  19. S. Wang, Q. S. Zeng, L. J. Yang, Z. Y. Zhang, Z. X. Wang, T. Pei, L. Ding, X. Liang, M. Gao, Y. Li, and L. M. Peng, “High-performance carbon nanotube light-emitting diodes with asymmetric contacts,” Nano Lett.11(1), 23–29 (2011). [CrossRef] [PubMed]
  20. L. J. Yang, S. Wang, Q. S. Zeng, Z. Y. Zhang, T. Pei, Y. Li, and L.-M. Peng, “Efficient photovoltage multiplication in carbon nanotubes,” Nat. Photonics5(11), 672–676 (2011). [CrossRef]
  21. Q. S. Zeng, S. Wang, L. J. Yang, Z. X. Wang, Z. Y. Zhang, L.-M. Peng, W. Y. Zhou, and S. S. Xie, “Doping-free fabrication of carbon nanotube thin-film diodes and their photovoltaic characteristics,” Nano Res.5(1), 33–42 (2012). [CrossRef]
  22. K. Ryu, A. Badmaev, C. Wang, A. Lin, N. Patil, L. Gomez, A. Kumar, S. Mitra, H.-S. P. Wong, and C. Zhou, “CMOS-analogous wafer-scale nanotube-on-insulator approach for submicrometer devices and integrated circuits using aligned nanotubes,” Nano Lett.9(1), 189–197 (2009). [CrossRef] [PubMed]
  23. S. J. Kang, C. Kocabas, T. Ozel, M. Shim, N. Pimparkar, M. A. Alam, S. V. Rotkin, and J. A. Rogers, “High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes,” Nat. Nanotechnol.2(4), 230–236 (2007). [CrossRef] [PubMed]
  24. W. W. Zhou, C. Rutherglen, and P. J. Burke, “Wafer scale synthesis of dense aligned arrays of single-walled carbon nanotubes,” Nano Res.1(2), 158–165 (2008). [CrossRef]
  25. L. Ding, D. N. Yuan, and J. Liu, “Growth of high-density parallel arrays of long single-walled carbon nanotubes on quartz substrates,” J. Am. Chem. Soc.130(16), 5428–5429 (2008). [CrossRef] [PubMed]
  26. L. Ding, A. Tselev, J. Wang, D. Yuan, H. Chu, T. P. McNicholas, Y. Li, and J. Liu, “Selective growth of well-aligned semiconducting single-walled carbon nanotubes,” Nano Lett.9(2), 800–805 (2009). [CrossRef] [PubMed]
  27. X. Ho, L. Ye, S. V. Rotkin, X. Xie, F. Du, S. Dunham, J. Zaumseil, and J. A. Rogers, “Theoretical and experimental studies of schottky diodes that use aligned arrays of single-walled carbon nanotubes,” Nano Res.3(6), 444–451 (2010). [CrossRef]
  28. P. G. Collins, M. S. Arnold, and Ph. Avouris, “Engineering carbon nanotubes and nanotube circuits using electrical breakdown,” Science292(5517), 706–709 (2001). [CrossRef] [PubMed]
  29. L. Y. Jiao, B. Fan, X. J. Xian, Z. Y. Wu, J. Zhang, and Z. F. Liu, “Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing,” J. Am. Chem. Soc.130(38), 12612–12613 (2008). [CrossRef] [PubMed]
  30. C. Wang, K. Ryu, A. Badmaev, J. Zhang, and C. Zhou, “Metal contact engineering and registration-free fabrication of complementary metal-oxide semiconductor integrated circuits using aligned carbon nanotubes,” ACS Nano5(2), 1147–1153 (2011). [CrossRef] [PubMed]
  31. L. J. Yang, S. Wang, Q. S. Zeng, Z. Y. Zhang, Y. Li, W. Zhou, J. Liu, and L.-M. Peng, “Channel-length-dependent transport and photovoltaic characteristics of carbon-nanotube-based, barrier-free bipolar diode,” ACS Appl. Mater. Interfaces4(3), 1154–1157 (2012). [CrossRef] [PubMed]
  32. S. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981).
  33. M. S. Arnold, J. D. Zimmerman, C. K. Renshaw, X. Xu, R. R. Lunt, C. M. Austin, and S. R. Forrest, “Broad spectral response using carbon nanotube/organic semiconductor/C60 photodetectors,” Nano Lett.9(9), 3354–3358 (2009). [CrossRef] [PubMed]
  34. S. W. Hong, T. Banks, and J. A. Rogers, “Improved density in aligned arrays of single-walled carbon nanotubes by sequential chemical vapor deposition on quartz,” Adv. Mater.22(16), 1826–1830 (2010). [CrossRef] [PubMed]
  35. M. M. Shulaker, H. Wei, N. Patil, J. Provine, H. Y. Chen, H.-S. P. Wong, and S. Mitra, “Linear increases in carbon nanotube density through multiple transfer technique,” Nano Lett.11(5), 1881–1886 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited