OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 8 — Aug. 1, 2012
  • pp: 1011–1019

Narrow linewidth 1118/559 nm VECSEL based on strain compensated GaInAs/GaAs quantum-wells for laser cooling of Mg-ions

Sanna Ranta, Miki Tavast, Tomi Leinonen, Ryan Epstein, and Mircea Guina  »View Author Affiliations


Optical Materials Express, Vol. 2, Issue 8, pp. 1011-1019 (2012)
http://dx.doi.org/10.1364/OME.2.001011


View Full Text Article

Enhanced HTML    Acrobat PDF (933 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the development of an optically-pumped vertical external-cavity surface-emitting laser emitting near 1120 nm using strain compensated quantum wells. The development is motivated by the need to achieve narrow linewidth emission at ~280 nm via fourth harmonic generation, which is required to cool Mg+ ions. The gain mirror had a top-emitting geometry, was grown by molecular beam epitaxy and comprised GaInAs/GaAs quantum wells strain compensated by GaAsP layers; the strain compensation was instrumental for achieving a dislocation free epitaxial structure without dark lines. We demonstrate VECSEL operation at a fundamental wavelength close to 1118 nm with a linewidth of less than 300 kHz. Using a lithium triborate crystal we achieved frequency doubling to ~559 nm with an output power of 1.1W.

© 2012 OSA

OCIS Codes
(140.3460) Lasers and laser optics : Lasers
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3600) Lasers and laser optics : Lasers, tunable
(140.5960) Lasers and laser optics : Semiconductor lasers
(140.3515) Lasers and laser optics : Lasers, frequency doubled
(140.7260) Lasers and laser optics : Vertical cavity surface emitting lasers
(140.7270) Lasers and laser optics : Vertical emitting lasers

ToC Category:
Laser Materials

History
Original Manuscript: April 16, 2012
Revised Manuscript: June 30, 2012
Manuscript Accepted: July 2, 2012
Published: July 5, 2012

Virtual Issues
Advances in Optical Materials (2012) Optical Materials Express

Citation
Sanna Ranta, Miki Tavast, Tomi Leinonen, Ryan Epstein, and Mircea Guina, "Narrow linewidth 1118/559 nm VECSEL based on strain compensated GaInAs/GaAs quantum-wells for laser cooling of Mg-ions," Opt. Mater. Express 2, 1011-1019 (2012)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-2-8-1011


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. W. Hänsch and A. L. Schawlow, “Cooling of gases by laser radiation,” Opt. Commun.13(1), 68–69 (1975). [CrossRef]
  2. M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett.9(8), 1063–1065 (1997). [CrossRef]
  3. M. Rahim, F. Felder, M. Fill, and H. Zogg, “Optically pumped 5 µm IV-VI VECSEL with Al-heat spreader,” Opt. Lett.33(24), 3010–3012 (2008). [CrossRef] [PubMed]
  4. A. Härkönen, M. Guina, O. Okhotnikov, K. Rößner, M. Hümmer, T. Lehnhardt, M. Müller, A. Forchel, and M. Fischer, “1-W antimonide-based vertical external cavity surface emitting laser operating at 2-µm,” Opt. Express14(14), 6479–6484 (2006). [CrossRef] [PubMed]
  5. T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “High-power optically pumped semiconductor laser at 1040 nm,” IEEE Photon. Technol. Lett.22(9), 661–663 (2010). [CrossRef]
  6. J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett.89(6), 061114 (2006). [CrossRef]
  7. T. Leinonen, S. Ranta, M. Tavast, M. Guina, and R. J. Epstein, “Narrow Linewidth 1120 nm Semiconductor Disk Laser Based on strain compensated GaInAs quantum wells,” in Lasers, Sources, and Related Photonic Devices, OSA Technical Digest (CD) (Optical Society of America, 2012), paper AW4A.18.
  8. Y. Kaneda, J. M. Yarborough, L. Li, N. Peyghambarian, L. Fan, C. Hessenius, M. Fallahi, J. Hader, J. V. Moloney, Y. Honda, M. Nishioka, Y. Shimizu, K. Miyazono, H. Shimatani, M. Yoshimura, Y. Mori, Y. Kitaoka, and T. Sasaki, “Continuous-wave all-solid-state 244 nm deep-ultraviolet laser source by fourth-harmonic generation of an optically pumped semiconductor laser using CsLiB6O10 in an external resonator,” Opt. Lett.33(15), 1705–1707 (2008). [CrossRef] [PubMed]
  9. J. Paul, Y. Kaneda, T. Wang, C. Lytle, J. Moloney, and J. Jones, “Precision Spectroscopy of Atomic Mercury in the Deep Ultraviolet Based on Fourth-Harmonic Generation from an Optically Pumped External-Cavity Semiconductor Laser,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CTuS6.
  10. Y. Kaneda, M. Fallahi, J. Hader, J. V. Moloney, S. W. Koch, B. Kunert, and W. Stoltz, “Continuous-wave single-frequency 295 nm laser source by a frequency-quadrupled optically pumped semiconductor laser,” Opt. Lett.34(22), 3511–3513 (2009). [CrossRef] [PubMed]
  11. S. Ranta, T. Hakkarainen, M. Tavast, J. Lindfors, T. Leinonen, and M. Guina, “Strain compensated 1120 nm GaInAs/GaAs vertical external-cavity surface-emitting laser grown by molecular beam epitaxy,” J. Cryst. Growth335(1), 4–9 (2011). [CrossRef]
  12. W. Alford, T. Raymond, and A. Allerman, “High power and good beam quality at 980 nm from a vertical external-cavity surface-emitting laser,” J. Opt. Soc. Am. B19(4), 663–666 (2002). [CrossRef]
  13. M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “Design and characteristics of high-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE J. Sel. Top. Quantum Electron.5(3), 561–573 (1999). [CrossRef]
  14. J. Jiménez, “Laser diode reliability: crystal defects and degradation modes,” C. R. Phys.4(6), 663–673 (2003). [CrossRef]
  15. S. M. Wang, T. G. Andersson, and M. J. Ekenstedt, “Temperature‐dependent transition from two‐dimensional to three‐dimensional growth in highly strained InxGa1-xAs/GaAs (0.36≤x≤1) single quantum wells,” Appl. Phys. Lett.61(26), 3139–3141 (1992). [CrossRef]
  16. X. Liu, A. Prasad, J. Nishio, E. R. Weber, Z. Liliental-Weber, and W. Walukiewicz, “Native point defects in low-temperature-grown GaAs,” Appl. Phys. Lett.67(2), 279–281 (1995). [CrossRef]
  17. Z. L. Liau, “Semiconductor wafer bonding via liquid capillarity,” Appl. Phys. Lett.77(5), 651–653 (2000). [CrossRef]
  18. M. Herrmann, V. Batteiger, S. Knünz, G. Saathoff, Th. Udem, and T. W. Hänsch, “Frequency metrology on single trapped ions in the weak binding limit: the 3s(1/2)-3p(3/2) transition in 24Mg+,” Phys. Rev. Lett.102(1), 013006 (2009). [CrossRef] [PubMed]
  19. M. A. Holm, D. Burns, A. I. Ferguson, and M. D. Dawson, “Actively stabilized single-frequency vertical-external-cavity AlGaAs laser,” IEEE Photon. Technol. Lett.11(12), 1551–1553 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited