OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 8 — Aug. 1, 2012
  • pp: 1156–1164

Crystalline phase distribution of Dy2(MoO4)3 in glass induced by 250 kHz femtosecond laser irradiation

Minjian Zhong, Yingying Du, Hongliang Ma, Yongmei Han, Bo Lu, Ye Dai, and Xianglong Zeng  »View Author Affiliations


Optical Materials Express, Vol. 2, Issue 8, pp. 1156-1164 (2012)
http://dx.doi.org/10.1364/OME.2.001156


View Full Text Article

Enhanced HTML    Acrobat PDF (1677 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Spatial precipitation of Dy2(MoO4)3 crystal in the glass is achieved by using 800 nm, 250 kHz femtosecond laser. Micro-Raman spectra show that multiple crystalline phases of Dy2(MoO4)3 can be formed in femtosecond laser-modified region. Their distributions depend mainly on femtosecond laser-induced temperature field, which is asymmetric along the light propagation direction. This phenomenon results from an inhomogeneous intensity distribution of the incident pulse due to both of self-focusing effect and spherical aberration effect. Furthermore, the EPMA mapping demonstrates that the O element concentration is reduced in the center of the modified region, while the Mo element one increases. The composition change is according strongly with the phase transformation of Dy2(MoO4)3 crystal. The present study implies that the asymmetry of the temperature field is an important factor to influence the crystal precipitation.

© 2012 OSA

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(320.2250) Ultrafast optics : Femtosecond phenomena
(350.3390) Other areas of optics : Laser materials processing

ToC Category:
Laser Materials Processing

History
Original Manuscript: May 7, 2012
Revised Manuscript: July 21, 2012
Manuscript Accepted: July 26, 2012
Published: July 30, 2012

Citation
Minjian Zhong, Yingying Du, Hongliang Ma, Yongmei Han, Bo Lu, Ye Dai, and Xianglong Zeng, "Crystalline phase distribution of Dy2(MoO4)3 in glass induced by 250 kHz femtosecond laser irradiation," Opt. Mater. Express 2, 1156-1164 (2012)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-2-8-1156


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003). [CrossRef] [PubMed]
  2. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996). [CrossRef] [PubMed]
  3. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3(7), 444–447 (2004). [CrossRef] [PubMed]
  4. Y. Teng, J. Zhou, F. Luo, G. Lin, and J. Qiu, “Controllable space selective precipitation of copper nanoparticles in borosilicate glasses using ultrafast laser irradiation,” J. Non-Cryst. Solids357(11-13), 2380–2383 (2011). [CrossRef]
  5. Y. Teng, B. Qian, N. Jiang, Y. Liu, F. Luo, S. Ye, J. Zhou, B. Zhu, H. Zeng, and J. Qiu, “Light and heat driven precipitation of copper nanoparticles inside Cu2+-doped borate glasses,” Chem. Phys. Lett.485(1-3), 91–94 (2010). [CrossRef]
  6. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008). [CrossRef]
  7. K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull.31(08), 620–625 (2006). [CrossRef]
  8. I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.101(4), 043506 (2007). [CrossRef]
  9. P. P. Rajeev, M. Gertsvolf, E. Simova, C. Hnatovsky, R. S. Taylor, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Memory in nonlinear ionization of transparent solids,” Phys. Rev. Lett.97(25), 253001 (2006). [CrossRef] [PubMed]
  10. M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett.93(23), 231112 (2008). [CrossRef]
  11. S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express13(12), 4708–4716 (2005). [CrossRef] [PubMed]
  12. Y. Liu, B. Zhu, Y. Dai, X. Qiao, S. Ye, Y. Teng, Q. Guo, H. Ma, X. Fan, and J. Qiu, “Femtosecond laser writing of Er3+-doped CaF2 crystalline patterns in glass,” Opt. Lett.34(21), 3433–3435 (2009). [CrossRef] [PubMed]
  13. K. Miura, J. Qiu, T. Mitsuyu, and K. Hirao, “Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses,” Opt. Lett.25(6), 408–410 (2000). [CrossRef] [PubMed]
  14. A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Formation of ferroelectric single-crystal architectures in LaBGeO5 glass by femtosecond vs. continuous-wave lasers,” J. Non-Cryst. Solids356(52-54), 3059–3065 (2010). [CrossRef]
  15. A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Directionally controlled 3D ferroelectric single crystal growth in LaBGeO5 glass by femtosecond laser irradiation,” Opt. Express17(25), 23284–23289 (2009). [CrossRef] [PubMed]
  16. Y. Dai, H. Ma, B. Lu, B. Yu, B. Zhu, and J. Qiu, “Femtosecond laser-induced oriented precipitation of Ba2TiGe2O8 crystals in glass,” Opt. Express16(6), 3912–3917 (2008). [CrossRef] [PubMed]
  17. A. Stone, M. Sakakura, Y. Shimotsuma, K. Miura, K. Hirao, V. Dierolf, and H. Jain, “Unexpected influence of focal depth on nucleation during femtosecond laser crystallization of glass,” Opt. Mater. Express1(5), 990–995 (2011). [CrossRef]
  18. C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys.98(1), 013517 (2005). [CrossRef]
  19. J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett.92(9), 092904 (2008). [CrossRef]
  20. F. Luo, B. Qian, G. Lin, J. Xu, Y. Liao, J. Song, H. Sun, B. Zhu, J. Qiu, Q. Zhao, and Z. Xu, “Redistribution of elements in glass induced by a high-repetition-rate femtosecond laser,” Opt. Express18(6), 6262–6269 (2010). [CrossRef] [PubMed]
  21. M. Roy, R. N. P. Choudhary, and H. N. Acharya, “X-ray and thermal studies of ferroelectric Dy2(MoO4)3,” J. Therm. Anal.35(5), 1471–1476 (1989). [CrossRef]
  22. A. Kumada, “Optical properties of gadolinium molybdate and their device applications,” Ferroelectrics3(1), 115–123 (1972). [CrossRef]
  23. A. A. Kaminskii, “New room-temperature laser-diode pumped efficient quasi-cw and cw single-mode laser based on ferroelectric and ferroelastic Gd2(MoO4)3: Nd3+ crystal,” Phys. Status Solidi A149(2), K39–K42 (1995). [CrossRef]
  24. Z. Wang, H. Liang, M. Gong, and Q. Su, “Novel red phosphor of Bi3+, Sm3+ co-activated NaEu(MoO4)2,” Opt. Mater.29(7), 896–900 (2007). [CrossRef]
  25. Y. Tsukada, T. Honma, and T. Komatsu, “Corrected article: ‘Self-organized periodic domain structure for second harmonic generations in ferroelastic β′-(Sm, Gd)2(MoO4)3 crystal lines on glass surfaces [Appl. Phys. Lett. 94, 041915 (2009)]’,” Appl. Phys. Lett.94(5), 059901 (2009). [CrossRef]
  26. R. Nakajima, M. Abe, Y. Benino, T. Fujiwara, H. G. Kim, and T. Komatsu, “Laser-induced crystallization of β′-RE2(MoO4)3 ferroelectrics (RE: Sm, Gd, Dy) in glasses and their surface morphologies,” J. Non-Cryst. Solids353(1), 85–93 (2007). [CrossRef]
  27. M. Abe, Y. Benino, T. Fujiwara, T. Komatsu, and R. Sato, “Writing of nonlinear optical Sm2(MoO4)3 crystal lines at the surface of glass by samarium atom heat processing,” J. Appl. Phys.97(12), 123516 (2005). [CrossRef]
  28. Y. Wang, T. Honma, and T. Komatsu, “Synthesis and laser patterning of ferroelastic β′-RE2(MoO4)3 crystals (RE: Sm, Gd, Tb, Dy) in rare-earth molybdenum borate glasses,” Mater. Chem. Phys.133(1), 118–125 (2012). [CrossRef]
  29. A. Marcinkevičius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys., A Mater. Sci. Process.76(2), 257–260 (2003). [CrossRef]
  30. C. Mauclair, A. Mermillod-Blondin, N. Huot, E. Audouard, and R. Stoian, “Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction,” Opt. Express16(8), 5481–5492 (2008). [CrossRef] [PubMed]
  31. Y. Dai, G. Yu, G. Wu, H. Ma, X. Yan, and G. Ma, “The effect of spherical aberration on temperature distribution inside glass by irradiation of a high repetition rate femtosecond pulse laser,” Chin. Phys. B21(2), 025201 (2012). [CrossRef]
  32. J. H. Marburger, “Self-focusing: theory,” Prog. Quantum Electron.4, 35–110 (1975). [CrossRef]
  33. K. Nassau, J. W. Shiever, and E. T. Keve, “Structural and phase relationships among trivalent tungstates and molybdates,” J. Solid State Chem.3(3), 411–419 (1971). [CrossRef]
  34. H. Behrens and M. Haack, “Cation diffusion in soda-lime-silicate glass melts,” J. Non-Cryst. Solids353(52-54), 4743–4752 (2007). [CrossRef]
  35. L. H. Brixner, J. R. Barkley, and W. Jeitschko, Handbook on the Physics and Chemistry of Rare Earths (North-Holland Publishing Company, 1979), Chap. 30.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited