OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 9 — Sep. 1, 2012
  • pp: 1226–1235

Unusual optical properties of the Au/Ag alloy at the matching mole fraction

Yoshiaki Nishijima and Shunsuke Akiyama  »View Author Affiliations


Optical Materials Express, Vol. 2, Issue 9, pp. 1226-1235 (2012)
http://dx.doi.org/10.1364/OME.2.001226


View Full Text Article

Enhanced HTML    Acrobat PDF (1550 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical properties of localized surface plasmon resonance (LSPR) in Au/Ag alloy were investigated experimentally and numerically. It was found that LSPR spectra of nanostructures at near-infrared wavelengths changed drastically at the 50% Au/Ag mole fraction. Both the experimental results and the finite-difference time-domain simulations using experimentally obtained n, k values showed a similar tendency. At 50% molar fraction, electromagnetic field enhancement reached almost the same value as in pure Au.

© 2012 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(160.4236) Materials : Nanomaterials
(220.4241) Optical design and fabrication : Nanostructure fabrication
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Plasmonics

History
Original Manuscript: May 2, 2012
Revised Manuscript: July 6, 2012
Manuscript Accepted: August 8, 2012
Published: August 9, 2012

Citation
Yoshiaki Nishijima and Shunsuke Akiyama, "Unusual optical properties of the Au/Ag alloy at the matching mole fraction," Opt. Mater. Express 2, 1226-1235 (2012)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-2-9-1226


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Pipino and V. Silin, “Gold nanoparticle response to nitro-compounds probed by cavity ring-down spectroscopy,” Chem. Phys. Lett.404(4-6), 361–364 (2005). [CrossRef]
  2. F. Lordan, J. H. Rice, B. Jose, R. J. Forster, and T. E. Keyes, “Site selective surface enhanced Raman on nanostructured cavities,” Appl. Phys. Lett.99(3), 033104 (2011). [CrossRef]
  3. Y. Sawai, B. Takimoto, H. Nabika, K. Ajito, and K. Murakoshi, “Observation of a small number of molecules at a metal nanogap arrayed on a solid surface using surface-enhanced Raman scattering,” J. Am. Chem. Soc.129(6), 1658–1662 (2007). [CrossRef] [PubMed]
  4. Y. Tsuboi, R. Shimizu, T. Shoji, and N. Kitamura, “Near-infrared continuous-wave light driving a two-photon photochromic reaction with the assistance of localized surface plasmon,” J. Am. Chem. Soc.131(35), 12623–12627 (2009). [CrossRef] [PubMed]
  5. Y. Nishijima, K. Ueno, Y. Yokota, K. Murakoshi, and H. Misawa, “Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode,” J. Phys. Chem. Lett.1(13), 2031–2036 (2010). [CrossRef]
  6. M. Harada, K. Asakura, Y. Ueki, and N. Toshima, “Structure of polymer-protected palladium-platinum bimetallic clusters at the oxidized state: extended x-ray absorption fine structure analysis,” J. Phys. Chem.96(24), 9730–9738 (1992). [CrossRef]
  7. N. Toshima, M. Harada, Y. Yamazaki, and K. Asakura, “Catalytic activity and structural analysis of polymer-protected gold-palladium bimetallic clusters prepared by the simultaneous reduction of hydrogen tetrachloroaurate and palladium dichloride,” J. Phys. Chem.96(24), 9927–9933 (1992). [CrossRef]
  8. K. Kusada, M. Yamauchi, H. Kobayashi, H. Kitagawa, and Y. Kubota, “Hydrogen-storage properties of solid-solution alloys of immiscible neighboring elements with Pd,” J. Am. Chem. Soc.132(45), 15896–15898 (2010). [CrossRef] [PubMed]
  9. Y. Herbani, T. Nakamura, and S. Sato, “Synthesis of near-monodispersed Au and Ag nanoalloys by high intensity laser irradiation of metal ions in hexane,” J. Phys. Chem. C115(44), 21592–21598 (2011). [CrossRef]
  10. Y. Herbani, T. Nakamura, and S. Sato, “Femtosecond laser -induced formation of Au-rich nanoalloys from the aqueous mixture of Au-Ag ions,” J. Nanomater.2010, 154210 (2010). [CrossRef]
  11. S. Link, Z. L. Wang, and M. A. El-Sayed, “Alloy formation of gold and silver nanoparticles and the dependence of the plasmon absorption on their composition,” J. Phys. Chem. B103(18), 3529–3533 (1999). [CrossRef]
  12. K. S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B110(39), 19220–19225 (2006). [CrossRef] [PubMed]
  13. N. E. Motl, E. Ewusi-Annan, I. T. Sines, L. Jensen, and R. E. Schaak, “Au and Cu alloy nanoparticles with tunable compositions and plasmonic properties: experimental determination of composition and correlation with theory,” J. Phys. Chem. C114(45), 19263–19269 (2010). [CrossRef]
  14. F. Hubenthal, N. Borg, and F. Trager, “Optical properties and ultrafast electron dynamics in gold and silver alloy and core and shell nanoparticles,” Appl. Phys. B93(1), 39–45 (2008). [CrossRef]
  15. S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence,” J. Phys. Chem. A103(9), 1165–1170 (1999). [CrossRef]
  16. P. Mulvaney, M. Giersig, and A. Henglein, “Electrochemistry of multilayer colloids: preparation and absorption spectrum of gold-coated silver particles,” J. Phys. Chem.97(27), 7061–7064 (1993). [CrossRef]
  17. S. Liu, G. Chen, P. N. Prasad, and M. T. Swihart, “Synthesis of monodisperse Au, Ag, and Au and Ag alloy nanoparticles with tunable size and surface plasmon resonance Frequency,” Chem. Mater.23, 4098–4101 (2011).
  18. M. Valodkar, S. Modi, A. Pal, and S. Thakore, “Synthesis and anti-bacterial activity of Cu, Ag and Cu and Ag alloy nanoparticles: A green approach,” Mater. Res. Bull.46(3), 384–389 (2011). [CrossRef]
  19. Z. S. Zhang, Z. J. Yang, X. L. Liu, M. Li, and L. Zhou, “Multiple plasmon resonances of Au/Ag alloyed hollow nanoshells,” Scr. Mater.63(12), 1193–1196 (2010). [CrossRef]
  20. R. Kuladeep, L. Jyothi, K. S. Alee, K. L. N. Deepak, and D. N. Rao, “Laser-assisted synthesis of Au-Ag alloy nanoparticles with tunable surface plasmon resonance frequency,” Opt. Mater. Express2(2), 161–172 (2012). [CrossRef]
  21. P. B. Johnson and R. W. Christy, “Optical constants of copper and nickel as a function of temperature,” Phys. Rev. B11(4), 1315–1323 (1975). [CrossRef]
  22. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  23. P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B9(12), 5056–5070 (1974). [CrossRef]
  24. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press Handbook Series, 1985).
  25. ASM, ASM Handbook: Volume 3: Alloy Phase Diagrams (ASM International, 1992).
  26. K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Spectrally-resolved atomic-scale length variations of gold nanorods,” J. Am. Chem. Soc.128(44), 14226–14227 (2006). [CrossRef] [PubMed]
  27. K. Ueno, S. Juodkazis, V. Mizeikis, D. Ohnishi, K. Sasaki, and H. Misawa, “Inhibition of multipolar plasmon excitation in periodic chains of gold nanoblocks,” Opt. Express15(25), 16527–16539 (2007). [CrossRef] [PubMed]
  28. Y. Nishijima, L. Rosa, and S. Juodkazis, “Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting,” Opt. Express20(10), 11466–11477 (2012). [CrossRef] [PubMed]
  29. G. Burns, Solid State Physics (Academic Press, 1985).
  30. A. R. Denton and N. W. Ashcroft, “Vegard’s law,” Phys. Rev. A43(6), 3161–3164 (1991). [CrossRef] [PubMed]
  31. V. Kuckermann, G. Thummes, H. H. Mende, and M. D. Tiwari, “Electrical deviations from Matthiessen's rule in a Ag:Au alloy,” Solid State Commun.54(8), 749–752 (1985). [CrossRef]
  32. H. L. Engquist and G. Grimvall, “Electrical transport and deviations from Matthiessen's rule in alloys,” Phys. Rev. B21(6), 2072–2077 (1980). [CrossRef]
  33. L. Pauling, “The nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atoms,” J. Am. Chem. Soc.54(9), 3570–3582 (1932). [CrossRef]
  34. A. L. Allred and E. G. Rochow, “A scale of electronegativity based on electrostatic force,” J. Inorg. Nucl. Chem.5(4), 264–268 (1958). [CrossRef]
  35. S. W. Hsu, K. On, and A. R. Tao, “Localized surface plasmon resonances of anisotropic semiconductor nanocrystals,” J. Am. Chem. Soc.133(47), 19072–19075 (2011). [CrossRef] [PubMed]
  36. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
  37. L. Wang, W. Xiong, Y. Nishijima, Y. Yokota, K. Ueno, H. Misawa, G. Bi, and J. R. Qiu, “Spectral properties and mechanism of instability of nanoengineered silver blocks,” Opt. Express19(11), 10640–10646 (2011). [CrossRef] [PubMed]
  38. M. Mcmahon, R. Lopez, H. Meyer, L. Feldman, and R. Haglund., “Rapid tarnishing of silver nanoparticles in ambient laboratory air,” Appl. Phys. B80(7), 915–921 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited