OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 2, Iss. 9 — Sep. 1, 2012
  • pp: 1292–1305

On the stability and reliability of Sr1-xBaxSi2O2N2:Eu2+ phosphors for white LED applications

I. H. Cho, G. Anoop, D. W. Suh, S. J. Lee, and J. S. Yoo  »View Author Affiliations


Optical Materials Express, Vol. 2, Issue 9, pp. 1292-1305 (2012)
http://dx.doi.org/10.1364/OME.2.001292


View Full Text Article

Enhanced HTML    Acrobat PDF (2476 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Sr1-xBaxSi2O2N2:Eu2+ phosphors were synthesized using high temperature solid state reactions and the reliability of the as-synthesized phosphors for White LED applications was investigated. The oxidation resistance of the phosphors was investigated by baking the phosphors at various temperatures in air for 2 hours and also at 85 °C, 85% relative humidity for 150 hours. The photo stability of the phosphor was studied by illuminating the phosphor using a high power laser diode (450 nm) at various laser fluxes. Phosphor converted LEDs were fabricated using the as-synthesized Sr1-xBaxSi2O2N2:Eu2+ (x = 0 and 0.40) phosphors. The long term stability of the fabricated LEDs was tested by keeping the LEDs at 85 °C and 85% relative humidity for 800 hrs. Even though phosphors show high thermal and chemical stability, the electroluminescent (EL) intensity of the fabricated LEDs drops by 15% after 800 hrs of operation. The degradation of EL intensity of the device might be the result of thermally assisted photo-ionization of Eu2+ ions in the phosphor.

© 2012 OSA

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(160.5690) Materials : Rare-earth-doped materials
(250.5230) Optoelectronics : Photoluminescence

ToC Category:
Fluorescent and Luminescent Materials

History
Original Manuscript: August 7, 2012
Revised Manuscript: August 16, 2012
Manuscript Accepted: August 16, 2012
Published: August 24, 2012

Citation
I. H. Cho, G. Anoop, D. W. Suh, S. J. Lee, and J. S. Yoo, "On the stability and reliability of Sr1-xBaxSi2O2N2:Eu2+ phosphors for white LED applications," Opt. Mater. Express 2, 1292-1305 (2012)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-2-9-1292


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol.27(2), 024001 (2012). [CrossRef]
  2. H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express19(S4Suppl 4), A991–A1007 (2011). [CrossRef] [PubMed]
  3. G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett.6(1), 342 (2011). [CrossRef] [PubMed]
  4. J. Zhang and N. Tansu, “Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes,” J. Appl. Phys.110(11), 113110 (2011). [CrossRef]
  5. P. Shan Hsu, M. T. Hardy, F. Wu, I. Koslow, E. C. Young, A. E. Romanov, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “444.9 nm semipolar (112) laser diode grown on an intentionally stress relaxed InGaN waveguiding layer,” Appl. Phys. Lett.100(2), 021104 (2012). [CrossRef]
  6. Y. K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Metalorganic vapor phase epitaxy of III-Nitride light-emitting diodes on nanopatterned AGOG sapphire substrate by abbreviated growth mode,” IEEE J. Sel. Top. Quantum Electron.15(4), 1066–1072 (2009). [CrossRef]
  7. E. Rangel, E. Matioli, Y. S. Choi, C. Weisbuch, J. S. Speck, and E. L. Hu, “Directionality control through selective excitation of low-order guided modes in thin-film InGaN photonic crystal light-emitting diodes,” Appl. Phys. Lett.98(8), 081104 (2011). [CrossRef]
  8. H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett.98(15), 151115 (2011). [CrossRef]
  9. J. Zhang, H. Zhao, and N. Tansu, “Effect of crystal-field split-off hole and heavy-hole bands crossover on gain characteristics of high Al-content AlGaN quantum well lasers,” Appl. Phys. Lett.97(11), 111105 (2010). [CrossRef]
  10. J. Zhang, H. Zhao, and N. Tansu, “Large optical gain AlGaN-delta-GaN quantum wells laser active regions in mid- and deep-ultraviolet spectral regimes,” Appl. Phys. Lett.98(25), 251112 (2011).
  11. Y. Taniasu and M. Kasu, “Polarization property of deep-ultraviolet light emission from C-plane AlN/GaN short-period superlattices,” Appl. Phys. Lett.99(25), 171111 (2011).
  12. E. Francesco Pecora, W. Zhang, A. Yu. Nikiforov, L. Zhou, D. J. Smith, J. Yin, R. Paiella, L. Dal Negro, and T. D. Moustakas, “Sub-250 nm room-temperature optical gain from AlGaN/AlN multiple quantum wells with strong band-structure potential fluctuations,” Appl. Phys. Lett.100(6), 061111 (2012). [CrossRef]
  13. R. J. Xie, Y. Q. Li, N. Hirosaki, and H. Yamamoto, Nitride Phosphors and Solid State Lighting (CRC Press, Taylor and Francis, 2011), Chap. 4.
  14. K. Sakuma, K. Omichi, N. Kimura, M. Ohashi, D. Tanaka, N. Hirosaki, Y. Yamamoto, R.-J. Xie, and T. Suehiro, “Warm-white light-emitting diode with yellowish orange SiALON ceramic phosphor,” Opt. Lett.29(17), 2001–2003 (2004). [CrossRef] [PubMed]
  15. R. J. Xie and N. Hirosaki, “Silicon-based oxynitride and nitride phosphors for white LEDs—A review,” Sci. Technol. Adv. Mater.8(7–8), 588–600 (2007). [CrossRef]
  16. M. Zeuner, S. Pagano, and W. Schnick, “Nitridosilicates and oxonitridosilicates: from ceramic materials to structural and functional diversity,” Angew. Chem. Int. Ed. Engl.50(34), 7754–7775 (2011). [CrossRef] [PubMed]
  17. J. W. H. van Krevel, H. T. Hintzen, R. Metselaar, and A. Meijerink, “Long Wavelength Ce3+ Emission in Y—Si—O—N Materials,” J. Alloy. Comp.268(1–2), 272–277 (1998). [CrossRef]
  18. J. W. H. van Krevel, H. T. Hintzen, and R. Metselaar, “On the Ce3+ luminescence in the melilite-type oxide nitride compound Y2Si3−xAlxO3+xN4−x,” Mater. Res. Bull.35(5), 747–754 (2000). [CrossRef]
  19. W. H. van Krevel, J. W. T. van Rutten, H. Mandal, H. T. Hintzen, and R. Metselaar, “Luminescence Properties of Terbium-, Cerium-, or Europium-Doped α-Sialon Materials,” J. Solid State Chem.165(1), 19–24 (2002). [CrossRef]
  20. Y. Q. Li, G. De With, and H. T. Hintzen, “Synthesis, structure, and luminescence properties of Eu2+ and Ce3+ activated BaYSi4N7,” J. Alloy. Comp.385(1–2), 1–11 (2004). [CrossRef]
  21. R. J. Xie, N. Hirosaki, K. Sakuma, Y. Yamamoto, and M. Mitomo, “Eu2+-doped Ca-α-SiAlON: A yellow phosphor for white light-emitting diodes,” Appl. Phys. Lett.84(26), 5404–5406 (2004). [CrossRef]
  22. M. Yamada, T. Naitou, K. Izuno, H. Tamaki, Y. Murazaki, M. Kameshima, and T. Mukai, “Red-Enhanced white-light-emitting diode using a new red Phosphor,” Jpn. J. Appl. Phys.42(Part 2, No.1A/B), L20–L23 (2003). [CrossRef]
  23. Y. Q. Li, C. M. Fang, G. de With, and H. T. Hintzen, “Preparation, structure and photoluminescence properties of Eu2+ and Ce3+-doped SrYSi4N7,” J. Solid State Chem.177(12), 4687–4694 (2004). [CrossRef]
  24. X. Piao, K. Machida, T. Horikawa, and B. Yun, “Acetate reduction synthesis of Sr2Si5N8:Eu2+ phosphor and its luminescence properties,” J. Lumin.130(1), 8–12 (2010). [CrossRef]
  25. G. Anoop, K. P. Kim, D. W. Suh, I. H. Cho, and J. S. Yoo, “Optical characteristics of Sr2Si3O2N4:Eu2+ phosphor for white light emitting diodes,” Electrochem. Solid-State Lett.14(9), J58–J60 (2011). [CrossRef]
  26. N. Kimura, K. Sakuma, S. Hirafune, K. Asano, N. Hirosaki, and R. J. Xie, “Extrahigh color rendering white light-emitting diode lamps using oxynitride and nitride phosphors excited by blue light-emitting diode,” Appl. Phys. Lett.90(5), 051109 (2007). [CrossRef]
  27. H. J. Lee, K. P. Kim, D. W. Suh, and J. S. Yoo, “Tuning the optical properties of (Sr, Ba)3Si6O3N8:Eu phosphor for LED Application,” J. Electrochem. Soc.158(3), J66–J70 (2011). [CrossRef]
  28. S. E. Brinkley, N. Pfaff, K. A. Denault, Z. Zhang, H. T. (Bert) Hintzen, R. Seshadri, S. Nakamura, and S. P. DenBaars, “Robust thermal performance of Sr2Si5N8:Eu2+: An efficient red emitting phosphor for light emitting diode based white lighting,” Appl. Phys. Lett.99(24), 241106 (2011). [CrossRef]
  29. H.-C. Kuo, C.-W. Hung, H.-C. Chen, K.-J. Chen, C.-H. Wang, C.-W. Sher, C.-C. Yeh, C.-C. Lin, C.-H. Chen, and Y.-J. Cheng, “Patterned structure of remote phosphor for phosphor-converted white LEDs,” Opt. Express19(S4Suppl 4), A930–A936 (2011). [CrossRef] [PubMed]
  30. Y. Q. Li, A. C. A. Delsing, G. de With, and H. T. Hintzen, “Luminescence properties of Eu2+-activated alkaline-earth silicon-oxynitride MSi2O2-δN2+2/3δ (M = Ca, Sr, Ba): A promising class of novel LED Conversion phosphors,” Chem. Mater.17(12), 3242–3248 (2005). [CrossRef]
  31. V. Bachmann, T. Justel, A. Meijerink, C. Ronda, and P. J. Schmidt, “Luminescence properties of SrSi2O2N2 doped with divalent rare earth ions,” J. Lumin.121(2), 441–449 (2006). [CrossRef]
  32. V. Bachmann, C. Ronda, O. Oeckler, W. Schnick, and A. Meijerink, “Color point tuning for (Sr,Ca,Ba)Si2O2N2:Eu2+ for white light LEDs,” Chem. Mater.21(2), 316–325 (2009). [CrossRef]
  33. O. Oeckler, F. Stadler, T. Rosenthal, and W. Schnick, “Real structure of SrSi2O2N2,” Solid State Sci.9(2), 205–212 (2007). [CrossRef]
  34. J. A. Kechele, O. Oeckler, F. Stadler, and W. Schnick, “Structure elucidation of BaSi2O2N2 – A host lattice for rare-earth doped luminescent materials in phosphor-converted (pc)-LEDs,” Solid State Sci.11(2), 537–543 (2009). [CrossRef]
  35. M. Seibald, O. Oeckler, V. R. Celinski, P. J. Schmidt, A. Tucks, and W. Schnick, “Real structure and diffuse scattering of Sr0.5Ba0.5Si2O2N2:Eu2+ - A highly efficient yellow phosphor for pc-LEDs,” Solid State Sci.13(9), 1769–1778 (2011). [CrossRef]
  36. Y. H. Song, W. J. Park, and D. H. Yoon, “Photoluminescence properties of Sr1–xSi2O2N2: Eu2+x as green to yellow-emitting phosphor for blue pumped white LEDs,” J. Phys. Chem. Solids71(4), 473–475 (2010). [CrossRef]
  37. Y. C. Fang, P.-C. Kao, Y.-C. Yang, and S.-Y. Chu, “Two-Step Synthesis of SrSi2O2N2: Eu2+ Green oxynitride phosphor: Electron-phonon coupling and thermal quenching behavior,” J. Electrochem. Soc.158(8), J246–J249 (2011). [CrossRef]
  38. L. X. Yang, X. Xu, L. Y. Hao, Y. F. Wang, L. J. Yin, X. F. Yang, W. He, and Q. X. Li, “Optimization mechanism of CaSi2O2N2: Eu2+ phosphor by La3+ ion doping,” J. Phys. D Appl. Phys.44(35), 355403 (2011). [CrossRef]
  39. X. Song, R. Fu, S. Agathopoulos, H. He, X. Zhao, and S. Zhang, “Photoluminescence properties of Eu2+-activated CaSi2O2N2: Redshift and concentration quenching,” J. Appl. Phys.106(3), 033103 (2009). [CrossRef]
  40. B.-G. Yun, Y. Miyamoto, and H. Yamamoto, “Luminescence properties of (Sr1 − uBau)Si2O2N2:Eu2+, yellow or orange phosphors for white LEDs, synthesized with (Sr1 − uBau)2SiO4:Eu2+ as a precursor,” J. Electrochem. Soc.154(10), J320–J325 (2007). [CrossRef]
  41. B. Lei, K. Machida, T. Horikawa, and H. Hanzawa, “Preparation of (Sr0.5Ba0.5)Si2N2O2:Eu2+ phosphor and its luminescence properties,” Chem. Lett.40(2), 140–141 (2011). [CrossRef]
  42. Y. Zhang, L. Wu, M. Ji, B. Wang, Y. Kong, and J. Xu, “Structure and photoluminescence properties of KSr4(BO3)3:Eu3+ red-emitting phosphor,” Opt. Mater. Express2(1), 92–102 (2012). [CrossRef]
  43. H. Li, H. K. Yang, B. K. Moon, B. C. Choi, J. H. Jeong, K. Jang, H. S. Lee, and S. S. Yi, “Tunable photoluminescence properties of Eu(II)-and Sm(III)-coactivated Ca9Y(PO4)7 and energy transfer between Eu(II) and Sm(III),” Opt. Mater. Express2(4), 443–451 (2012). [CrossRef]
  44. S. K. K. Shaat, H. C. Swart, and O. M. Ntwaeaborwa, “Synthesis and characterization of white light emitting CaxSr1-xAl2O4:Tb3+,Eu3+ phosphor for solid state lighting,” Opt. Mater. Express2(7), 962–968 (2012). [CrossRef]
  45. T. L. Barr, “An XPS Study of Si as it Occurs in Adsorbents, Catalysts and Thin Films,” Appl. Surf. Sci.15(1–4), 1–35 (1983). [CrossRef]
  46. R. P. Vasquez, “X-ray photoelectron spectroscopy study of Sr and Ba compounds,” J. Electron. Spectrosc. Relat. Phemon.56(3), 217–240 (1991). [CrossRef]
  47. V. A. Gritsenko, R. W. M. Kwok, H. Wong, and J. B. Xu, “Short-range order in non-stoichiometric amorphous silicon oxynitride and silicon-rich nitride,” J. Non-Cryst. Solids297(1), 96–101 (2002). [CrossRef]
  48. S. Yamada, H. Emoto, M. Ibukiyama, and N. Hirosaki, “Properties of SiAlON powder phosphors for white LEDs,” J. Eur. Ceram. Soc.32(7), 1355–1358 (2012). [CrossRef]
  49. A. Nag and T. R. N. Kutty, “The light induced valence change of europium in Sr2SiO4:Eu involving transient crystal structure,” J. Mater. Chem.14(10), 1598–1604 (2004). [CrossRef]
  50. G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer, 1994).
  51. P. Dorenbos, “Thermal quenching of Eu2+ 5d–4f luminescence in inorganic compounds,” J. Phys. Condens. Matter17(50), 8103–8111 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited