OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 1 — Jan. 1, 2013
  • pp: 1–10

Temperature dependence of luminescence for different surface flaws in high purity silica glass

J. Fournier, P. Grua, J. Néauport, E. Fargin, V. Jubera, D. Talaga, A. Del Guerzo, G. Raffy, and S. Jouannigot  »View Author Affiliations


Optical Materials Express, Vol. 3, Issue 1, pp. 1-10 (2013)
http://dx.doi.org/10.1364/OME.3.000001


View Full Text Article

Enhanced HTML    Acrobat PDF (894 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In situ temperature dependence of the Photoluminescence under 325nm irradiation is used to investigate defect populations existing in different surface flaws in high purity fused silica. Five photoluminescence bands peaking at 1.9, 2.1, 2.3, 2.63 and 3.11 eV have been detected in the spectral area ranging from 1.6 up to 3.6 eV. The Gaussian deconvolution of spectra allows dividing the five luminescence bands in two categories. The former corresponds to bands showing a significant intensity enhancement while temperature decreases; the latter corresponds to bands remaining insensitive to the temperature evolution. Such a behavior brings new information on defects involved in laser damage mechanism at 351 nm in nanosecond regime.

© 2012 OSA

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(180.2520) Microscopy : Fluorescence microscopy

ToC Category:
Glass and Other Amorphous Materials

History
Original Manuscript: July 24, 2012
Revised Manuscript: October 23, 2012
Manuscript Accepted: October 24, 2012
Published: November 29, 2012

Citation
J. Fournier, P. Grua, J. Néauport, E. Fargin, V. Jubera, D. Talaga, A. Del Guerzo, G. Raffy, and S. Jouannigot, "Temperature dependence of luminescence for different surface flaws in high purity silica glass," Opt. Mater. Express 3, 1-10 (2013)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-3-1-1


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. H. Lowdermilk, “Status of the National Ignition Facility project,” Proc. SPIE3047, 16–37 (1996).
  2. M. L. André, “Status of the LMJ project,” Proc. SPIE3047, 38–42 (1996).
  3. N. Bloembergen, “Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics,” Appl. Opt.12(4), 661–664 (1973). [CrossRef] [PubMed]
  4. J. Fournier, J. Néauport, P. Grua, E. Fargin, V. Jubera, D. Talaga, and S. Jouannigot, “Evidence of a green luminescence band related to surface flaws in high purity silica glass,” Opt. Express18(21), 21557–21566 (2010). [CrossRef] [PubMed]
  5. L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids239(1-3), 16–48 (1998). [CrossRef]
  6. L. Vaccaro, M. Cannas, and R. Boscaino, “Phonon coupling of non-bridging oxygen hole center with the silica environment: Temperature dependence of the 1.9 eV emission spectra,” J. Lumin.128(7), 1132–1136 (2008). [CrossRef]
  7. N. Trukhin and K. M. Golant, “Absorption and luminescence in amorphous silica synthesized by low-pressure plasmachemical technology,” J. Non-Cryst. Solids353(5-7), 530–536 (2007). [CrossRef]
  8. Y. Sakurai and K. Nagasawa, “Excitation energy dependence of the photoluminescence bands at 2.7 and 4.3 eV in silica glass at low temperature,” J. Non-Cryst. Solids290(2-3), 189–193 (2001). [CrossRef]
  9. J. Néauport, P. Cormont, L. Lamaignère, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on laser induced damage density at 351 nm,” Opt. Commun.281(14), 3802–3805 (2008). [CrossRef]
  10. L. Vaccaro, M. Cannas, and R. Boscaino, “Phonon coupling of non-bridging oxygen hole center with the silica environment: Temperature dependence of the 1.9 eV emission spectra,” J. Lumin.128(7), 1132–1136 (2008). [CrossRef]
  11. H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohki, K. Nagasawa, and Y. Hama, “Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation,” Phys. Rev. B Condens. Matter45(2), 586–591 (1992). [CrossRef] [PubMed]
  12. H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohki, K. Nagasawa, and Y. Hama, “Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation,” Phys. Rev. B Condens. Matter45(2), 586–591 (1992). [CrossRef] [PubMed]
  13. M. Kalceff, “Cathodoluminescence microcharacterization of the defect structure of irradiated hydrated and anhydrous fused silicon dioxide,” Phys. Rev. B57(10), 5674–5683 (1998). [CrossRef]
  14. Y. Sakurai and K. Nagasawa, “Green photoluminescence in γ-irradiated oxygen-surplus silica glass,” J. Appl. Phys.86(3), 1377–1381 (1999). [CrossRef]
  15. M. R. Kozlowski, C. L. Battersby, and S. G. Demos, “Luminescence investigation of SiO2 surfaces damaged by 0.35 µm laser illumination,” Proc. SPIE3902, 138–144 (2000). [CrossRef]
  16. S. G. Demos, M. Staggs, K. Minoshima, and J. Fujimoto, “Characterization of laser induced damage sites in optical components,” Opt. Express10(25), 1444–1450 (2002). [CrossRef] [PubMed]
  17. H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from Si clusters in γ-irradiated amorphous SiO2,” J. Appl. Phys.80(6), 3513–3517 (1996). [CrossRef]
  18. Y. Sakurai, “Photoluminescence band near 2.2 eV in γ-irradiated oxygen-deficient silica glass,” J. Non-Cryst. Solids342(1-3), 54–58 (2004). [CrossRef]
  19. Y. Sakurai, “Effect of thermal heat treatment on oxygen-deficiency-associated defect centers: relation to 1.8 eV photoluminescence bands in silica glass,” J. Appl. Phys.95(2), 543–545 (2004). [CrossRef]
  20. H. Nishikawa, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hama, “Defects and optical absorption bands induced by surplus oxygen in high purity synthetic silica,” J. Appl. Phys.65(12), 4672–4678 (1989). [CrossRef]
  21. M. Guzzi, M. Martini, M. Mattaini, F. Pio, and G. Spinolo, “Luminescence of fused silica: observation of the O2- emission band,” Phys. Rev. B Condens. Matter35(17), 9407–9409 (1987). [CrossRef] [PubMed]
  22. L. Skuja, “Direct singlet-to-triplet optical absorption and luminescence excitation band of the twofold-coordinated silicon center in oxygen-deficient glassy SiO2,” J. Non-Cryst. Solids167(3), 229–238 (1994). [CrossRef]
  23. C. Giansante, G. Raffy, C. Schäfer, H. Rahma, M.-T. Kao, A. G. L. Olive, and A. Del Guerzo, “White-light-emitting self-assembled nanofibers and their evidence by microspectroscopy of individual objects,” J. Am. Chem. Soc.133(2), 316–325 (2011). [CrossRef]
  24. J. Fournier, PhD thesis (University of Bordeaux, 2011).
  25. T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett.94(15), 151114 (2009). [CrossRef]
  26. L. N. Skuja and A. N. Trukhin, “Comment on ‘Luminescence of fused silica: observation of the O2- emission band’,” Phys. Rev. B Condens. Matter39(6), 3909–3911 (1989). [CrossRef] [PubMed]
  27. K. Ramseyer and J. Mullis, “Factors influencing short-lived blue cathodoluminescence of α-quartz,” Am. Min.75, 791–800 (1990).
  28. M. Leone, R. Boscaino, M. Cannas, and F. M. Gelardi, “Low temperature photoluminescence spectroscopy relationship between 3.1 and 4.2 eV bands in vitreous silica,” J. Non-Cryst. Solids216, 105–110 (1997). [CrossRef]
  29. Y. Sakurai, “The 3.1 eV photoluminescence band in oxygen-deficient silica glass,” J. Non-Cryst. Solids271(3), 218–223 (2000). [CrossRef]
  30. M. Kohketsu, K. Awazu, H. Kawazoe, and M. Yamane, “Photoluminescence centers in VAD SiO2 glasses sintered under reducing or oxidizing atmospheres,” Jpn. J. Appl. Phys.28(Part 1, No. 4), 615–621 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited