OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 1 — Jan. 1, 2013
  • pp: 114–125

Application of nanoporous silicon substrates for terahertz spectroscopy

Shu-Zee A. Lo, Gagan Kumar, Thomas E. Murphy, and Edwin J. Heilweil  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 1, pp. 114-125 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3487 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Mid to far-infrared (terahertz) spectroscopy is a valuable tool for probing and characterizing macromolecular structures and motions of complex molecules, including low frequency vibrational and phonon modes in condensed phases. We describe here an improved and readily implemented method for performing terahertz spectroscopic measurements by using a nanoporous silicon substrate to capture and concentrate the substance to be analyzed. We compare the results to conventional sampling methods, including dissolution and crystallization on a flat silicon surface and dispersing crystallites in compressed polyethylene pellets, and show that the use of a transparent, nanoporous substrate provides both increased sensitivity and yields sharper spectral features than conventional solid-state sampling approaches. FTIR measurements are reported over the spectral range from 50–2000 cm−1 (1.5–60 THz), for salicylic acid, dicyanobenzene, glycine, and aspartame.

© 2012 OSA

OCIS Codes
(300.6270) Spectroscopy : Spectroscopy, far infrared
(160.4236) Materials : Nanomaterials
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:

Original Manuscript: October 8, 2012
Revised Manuscript: November 19, 2012
Manuscript Accepted: December 12, 2012
Published: December 20, 2012

Shu-Zee A. Lo, Gagan Kumar, Thomas E. Murphy, and Edwin J. Heilweil, "Application of nanoporous silicon substrates for terahertz spectroscopy," Opt. Mater. Express 3, 114-125 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. van Exter, C. Fattinger, and D. Grischkowsky, “Terahertz time-domain spectroscopy of water vapor,” Opt. Lett.14, 1128–1130 (1989). [CrossRef]
  2. O. Esenturk, A. Evans, and E. Heilweil, “Terahertz spectroscopy of dicyanobenzenes: anomalous absorption intensities and spectral calculations,” Chem. Phys. Lett.442, 71–77 (2007). [CrossRef]
  3. S. Kumar, A. K. Rai, V. Singh, and S. Rai, “Vibrational spectrum of glycine molecule,” Spectrochim. Acta61, 2741–2746 (2005). [CrossRef]
  4. M. Kutteruf, C. Brown, L. Iwaki, M. Campbell, T. Korter, and E. Heilweil, “Terahertz spectroscopy of short-chain polypeptides,” Chem. Phys. Lett.375, 337–343 (2003). [CrossRef]
  5. N. Peica, “Identification and characterisation of the E951 artificial food sweetener by vibrational spectroscopy and theoretical modelling,” J. Raman Spectrosc.40, 2144–2154 (2009). [CrossRef]
  6. V. Volovšek, L. Colombo, and K. Furić, “Vibrational spectrum and normal coordinate calculations of the salicylic acid molecule,” J. Raman Spectrosc.14, 347–352 (1983). [CrossRef]
  7. E. J. Heilweil and D. F. Plusquellic, “Terahertz spectroscopy of biomolecules,” in Terahertz Spectroscopy: Principles and Applications, S. Dexheimer, ed. (CRC Press, 2008), pp. 269–298.
  8. V. Meenatchi, K. Muthu, M. Rajasekar, S. Meenakshisundaram, and S. Mojumdar, “Crystal growth, structure and characterization of o-hydroxybenzoic acid single crystals,” J. Therm. Anal. Calorim.108, 895–900 (2012). [CrossRef]
  9. M. Bhat and S. Dharmaprakash, “Growth of nonlinear optical γ-glycine crystals,” J. Cryst. Growth236, 376–380 (2002). [CrossRef]
  10. J. S. Melinger, N. Laman, S. S. Harsha, and D. Grischkowsky, “Line narrowing of terahertz vibrational modes for organic thin polycrystalline films within a parallel plate waveguide,” Appl. Phys. Lett.89, 251110 (2006). [CrossRef]
  11. S. S. Harsha, J. S. Melinger, S. B. Qadri, and D. Grischkowsky, “Substrate independence of THz vibrational modes of polycrystalline thin films of molecular solids in waveguide THz-TDS,” J. Appl. Phys.111, 023105 (2012). [CrossRef]
  12. D. F. Plusquellic, K. Siegrist, E. J. Heilweil, and O. Esenturk, “Applications of terahertz spectroscopy in biosystems,” Chem. Phys. Chem.8, 2412–2431 (2007). [CrossRef] [PubMed]
  13. Certain commercial equipment, instruments or materials are identified here to adequately specify the experimental procedure. In no case does identification imply recommendation or endorsement by NIST, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.
  14. M. Franz, B. M. Fischer, and M. Walther, “The Christiansen effect in terahertz time-domain spectra of coarse-grained powders,” Appl. Phys. Lett.92, 021107 (2008). [CrossRef]
  15. S. Saito, T. M. Inerbaev, H. Mizuseki, N. Igarashi, and Y. Kawazoe, “Terahertz vibrational modes of crystalline salicylic acid by numerical model using periodic density functional theory,” Jpn. J. Appl. Phys.45, 4170–4175 (2006). [CrossRef]
  16. Y. Ueno and K. Ajito, “Terahertz time-domain spectra of aromatic carboxylic acids incorporated in nano-sized pores of mesoporous silicate,” Anal. Sci.23, 803–807 (2007). [CrossRef] [PubMed]
  17. J. Higgins, X. Zhou, and R. Liu, “Density functional theory study of vibrational spectra: 9. Structures and vibrational assignments of dicyanobenzenes,” Spectrochim. Acta A53, 721–731 (1997). [CrossRef]
  18. A. Bouchard, G. W. Hofland, and G.-J. Witkamp, “Solubility of glycine polymorphs and recrystallization of β-glycine,” J. Chem. Eng. Data52, 1626–1629 (2007). [CrossRef]
  19. X. K. Zhang, E. G. Lewars, R. E. March, and J. M. Parnis, “Vibrational spectrum of the acetone-water complex: a matrix isolation FTIR and theoretical study,” J. Phys. Chem.97, 4320–4325 (1993). [CrossRef]
  20. Y. Ueno, R. Rungsawang, I. Tomita, and K. Ajito, “Terahertz time-domain spectra of inter- and intramolecular hydrogen bonds of fumaric and maleic acids,” Chem. Lett.35, 1128–1129 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited