OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 1 — Jan. 1, 2013
  • pp: 86–94

Broadband antireflection silicon carbide surface by self-assembled nanopatterned reactive-ion etching

Yiyu Ou, Imran Aijaz, Valdas Jokubavicius, Rositza Yakimova, Mikael Syväjärvi, and Haiyan Ou  »View Author Affiliations


Optical Materials Express, Vol. 3, Issue 1, pp. 86-94 (2013)
http://dx.doi.org/10.1364/OME.3.000086


View Full Text Article

Enhanced HTML    Acrobat PDF (1668 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An approach of fabricating pseudoperiodic antireflective subwavelength structures on silicon carbide by using self-assembled Au nanopatterns as etching mask is demonstrated. The nanopatterning process is more time-efficiency than the e-beam lithography or nanoimprint lithography process. The influences of the reactive-ion etching conditions and deposited Au film thickness to the subwavelength structure profile and its corresponding surface reflectance have been systematically investigated. Under the optimal experimental conditions, the average reflectance of the silicon carbide in the range of 390–784 nm is dramatically suppressed from 21.0% to 1.9% after introducing the pseudoperiodic nanostructures. A luminescence enhancement of 226% was achieved at an emission angle of 20° on the fluorescent silicon carbide. Meanwhile, the angle-resolved photoluminescence study presents a considerable omnidirectional luminescence enhancement.

© 2012 OSA

OCIS Codes
(250.5230) Optoelectronics : Photoluminescence
(220.4241) Optical design and fabrication : Nanostructure fabrication
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Metamaterials

History
Original Manuscript: December 4, 2012
Revised Manuscript: December 12, 2012
Manuscript Accepted: December 12, 2012
Published: December 19, 2012

Citation
Yiyu Ou, Imran Aijaz, Valdas Jokubavicius, Rositza Yakimova, Mikael Syväjärvi, and Haiyan Ou, "Broadband antireflection silicon carbide surface by self-assembled nanopatterned reactive-ion etching," Opt. Mater. Express 3, 86-94 (2013)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-3-1-86


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett.98, 151115 (2011). [CrossRef]
  2. T. J. Prosa, P. H. Clifton, H. Zhong, A. Tyagi, R. Shivaraman, S. P. DenBaars, S. Nakamura, and J. S. Speck, “Atom probe analysis of interfacial abruptness and clustering within a single InxGa1−xN quantum well device on semipolar (1011¯) GaN substrate,” Appl. Phys. Lett.98, 191903 (2011). [CrossRef]
  3. C. Wetzel and T. Detchprohm, “Wavelength-stable rare earth-free green light-emitting diodes for energy efficiency,” Opt. Express19, A962–A971 (2011). [CrossRef] [PubMed]
  4. H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express19, A991–A1007 (2011). [CrossRef] [PubMed]
  5. X. Li, R. Song, Y. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photonics J. 3, 489–499 (2011). [CrossRef]
  6. T. Kolbe, A. Knauer, C. Chua, Z. Yang, S. Einfeldt, P. Vogt, N. M. Johnson, M. Weyers, and M. Kneissl, “Optical polarization characteristics of ultraviolet (In)(Al)GaN multiple quantum well light emitting diodes,” Appl. Phys. Lett.97, 171105 (2010). [CrossRef]
  7. K. Hazu and S. F. Chichibu, “Optical polarization properties of m-plane AlxGa1−xN epitaxial films grown on m-plane freestanding GaN substrates toward nonpolar ultraviolet LEDs, ” Opt. Express19, A1008–A1021 (2011). [CrossRef] [PubMed]
  8. S. Kamiyama, T. Maeda, Y. Nakamura, M. Iwaya, H. Amano, I. Akasaki, H. Kinoshita, T. Furusho, M. Yoshimoto, T. Kimoto, J. Suda, A. Henry, I. G. Ivanov, J. P. Bergman, B. Monemar, T. Onuma, and S. F. Chichibu, “Extremely high quantum efficiency of donor-acceptor-pair emission in N-and-B-doped 6H-SiC,” J. Appl. Phys.99, 093108 (2006). [CrossRef]
  9. Y. Ou, V. Jokubavicius, S. Kamiyama, C. Liu, R. W. Berg, M. Linnarsson, R. Yakimova, M. Syväjärvi, and H. Ou, “Donor-acceptor-pair emission characterization in N-B doped fluorescent SiC,” Opt. Mater. Express1, 1439–1446 (2011). [CrossRef]
  10. X. Li, J. Gao, L. Xue, and Y. Han, “Porous polymer films with gradient-refractive-index structure for broadband and omnidirectional antireflection coatings,” Adv. Funct. Mater.20, 259–265 (2010). [CrossRef]
  11. S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett.93, 133108 (2008). [CrossRef]
  12. J. J. Wierer, A. David, and M. M. Megens, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency,” Nat. Photonics3, 163–169 (2009). [CrossRef]
  13. E. Matioli, B. Fleury, E. Rangel, T. Melo, E. Hu, J. Speck, and C. Weisbuch, “High extraction efficiency GaN-based photonic-crystal light-emitting diodes: comparison of extraction lengths between surface and embedded Photonic crystals,” Appl. Phys. Express3, 032103 (2010). [CrossRef]
  14. J. Jewell, D. Simeonov, S.-C. Huang, Y.-L. Hu, S. Nakamura, J. Speck, and C. Weisbuch, “Double embedded photonic crystals for extraction of guided light in light-emitting diodes,” Appl. Phys. Lett.100, 171105 (2012). [CrossRef]
  15. Y. K. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett.91, 221107 (2007). [CrossRef]
  16. Y. K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Metalorganic vapor phase epitaxy of III-Nitride light-emitting diodes on nanopatterned AGOG sapphire substrate by abbreviated growth mode,” IEEE J. Sel. Top. Quantum Electron.15, 1066–1072 (2009). [CrossRef]
  17. Y. K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures,” Opt. Express17, 13747–13757 (2009).
  18. W. H. Koo, W. Youn, P. Zhu, X.-H. Li, N. Tansu, and F. So, “Light extraction of organic light emitting diodes by defective hexagonal-close-packed array,” Adv. Funct. Mater.22, 3454–3459 (2012). [CrossRef]
  19. S. Chhajed, W. Lee, J. Cho, E. F. Schubert, and J. K. Kim, “Strong light extraction enhancement in GaInN light-emitting diodes by using self-organized nanoscale patterning of p-type GaN,” Appl. Phys. Lett.98, 071102 (2011). [CrossRef]
  20. Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbott, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett.94, 263118 (2009). [CrossRef]
  21. L. Sainiemi, V. Jokinen, A. Shah, M. Shpak, S. Aura, P. Suvanto, and S. Franssila, “Non-reflcecting silicon and polymer surfaces by plasma etching and replication,” Adv. Mater.23, 122–126 (2011). [CrossRef]
  22. H. Park, D. Shin, G. Kang, S. Baek, K. Kim, and W. J. Padilla, “Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays,” Adv. Mater.23, 5796–5800 (2011). [CrossRef] [PubMed]
  23. A. Najar, A. B. Slimane, M. N. Hedhili, D. Anjum, R. Sougrat, T. K. Ng, and B. S. Ooi, “Effect of hydrofluoric acid concentration on the evolution of photoluminescence characteristics in porous silicon nanowires prepared by Ag-assisted electroless etching method,” J. Appl. Phys.112, 033502 (2012). [CrossRef]
  24. T. Seko, S. Mabuchi, F. Teramae, A. Suzuki, Y. Kaneko, R. Kawai, S. Kamiyama, M. Iwaya, H. Amano, and I. Akasaki, “Fabrication technique for moth-eye structure using low-energy electron-beam projection lithography for high-performance blue-lightemitting diode on SiC substrate,” Proc. SPIE7216, 721628 (2009). [CrossRef]
  25. R. Kawai, T. Kondo, A. Suzuki, F. Teramae, T. Kitano, K. Tamura, H. Sakurai, M. Iwaya, H. Amano, S. Kamiyama, I. Akasaki, M. Chen, A. Li, and K. Su, “Realization of extreme light extraction efficiency for moth-eye LEDs on SiC substrate using high-reflection electrode,” Phys. Status Solidi C7, 2180–2182 (2010). [CrossRef]
  26. Y. Ou, V. Jokubavicius, P. Hens, M. Kaiser, P. Wellmann, R. Yakimova, M. Syväjärvi, and H. Ou, “Broadband and omnidirectional light harvesting enhancement of fluorescent SiC,” Opt. Express20, 7575–7579 (2012). [CrossRef] [PubMed]
  27. R. Y. Zhang, B. Shao, J. R. Dong, K. Huang, Y. M. Zhao, S. Z. Yu, and H. Yang, “Broadband quasi-omnidirectional antireflection AlGaInP window for III–V multi-junction solar cells through thermally dewetted Au nanotemplate,” Opt. Mater. Express2, 173–182 (2012). [CrossRef]
  28. J. W. Leem and J. S. Yu, “Wafer-scale highly-transparent and superhydrophilic sapphires for high-performance optics,” Opt. Express20, 26160–26166 (2012). [CrossRef] [PubMed]
  29. J. W. Leem and J. S. Yu, “Broadband and wide-angle antireflection subwavelength structures of Si by inductively coupled plasma etching using dewetted nanopatterns of Au thin films as masks,” Thin Solid Films519, 3792–3797 (2011). [CrossRef]
  30. Y. Ou, V. Jokubavicius, R. Yakimova, M. Syväjärvi, and H. Ou, “Omnidirectional luminescence enhancement of fluorescent SiC via pseudoperiodic antireflective subwavelength structures,” Opt. Lett.37, 3816–3818 (2012). [CrossRef] [PubMed]
  31. Y. Ou, D. Corell, C. Dam-Hansen, P. Petersen, and H. Ou, “Antireflective subwavelength structures for improvement of the extraction efficiency and color rendering index of monolithic white light-emitting diode,” Opt. Express19, A166–A172 (2011). [CrossRef] [PubMed]
  32. F. A. Khan and I. Adesida, “High rate etching of SiC using inductively coupled plasma reactive ion etching in SF6-based gas mixtures,” Appl. Phys. Lett.75, 2268–2270 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited