OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 10 — Oct. 1, 2013
  • pp: 1716–1726

Role of thermal ionization in internal modification of bulk borosilicate glass with picosecond laser pulses at high repetition rates

Mingying Sun, Urs Eppelt, Wolfgang Schulz, and Jianqiang Zhu  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 10, pp. 1716-1726 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3734 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the roles of thermal ionization and electronic damage in the internal modification of bulk borosilicate glass by high repetition rate picosecond laser pulses. Laser-induced plasma generation, nonlinear energy deposition and steady temperature distribution are numerically analyzed. The simulated modified regions show good agreement with the experimental results, thereby revealing the roles of thermal damage and electronic damage in the internal modification. While the elliptical outer structure is recognized as the molten region, we found that the teardrop-shaped inner structure is the damaged zone caused by high-density free-electrons. In the formation of the inner structure, cascade ionization is seeded by thermal ionization instead of multi-photon ionization and dramatically increases the free-electron density to the damage threshold. The contour of the inner structure is found to be corresponding to a characteristic isotherm of around 3000 ~4000 °C.

© 2013 OSA

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(140.3440) Lasers and laser optics : Laser-induced breakdown
(160.2750) Materials : Glass and other amorphous materials
(320.5390) Ultrafast optics : Picosecond phenomena
(320.7090) Ultrafast optics : Ultrafast lasers
(350.3390) Other areas of optics : Laser materials processing

ToC Category:
Laser Materials Processing

Original Manuscript: July 30, 2013
Revised Manuscript: September 13, 2013
Manuscript Accepted: September 15, 2013
Published: September 24, 2013

Virtual Issues
Ultrafast Laser Modification of Materials (2013) Optical Materials Express

Mingying Sun, Urs Eppelt, Wolfgang Schulz, and Jianqiang Zhu, "Role of thermal ionization in internal modification of bulk borosilicate glass with picosecond laser pulses at high repetition rates," Opt. Mater. Express 3, 1716-1726 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008). [CrossRef]
  2. C. B. Schaffer, A. Brodeur, J. F. García, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett.26(2), 93–95 (2001). [CrossRef] [PubMed]
  3. R. Osellame, N. Chiodo, V. Maselli, A. Yin, M. Zavelani-Rossi, G. Cerullo, P. Laporta, L. Aiello, S. De Nicola, P. Ferraro, A. Finizio, and G. Pierattini, “Optical properties of waveguides written by a 26 MHz stretched cavity Ti:sapphire femtosecond oscillator,” Opt. Express13(2), 612–620 (2005). [CrossRef] [PubMed]
  4. R. R. Gattass, L. R. Cerami, and E. Mazur, “Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates,” Opt. Express14(12), 5279–5284 (2006). [CrossRef] [PubMed]
  5. C. Miese, M. J. Withford, and A. Fuerbach, “Femtosecond laser direct-writing of waveguide Bragg gratings in a quasi cumulative heating regime,” Opt. Express19(20), 19542–19550 (2011). [CrossRef] [PubMed]
  6. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W. J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express16(13), 9443–9458 (2008). [CrossRef] [PubMed]
  7. S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express13(12), 4708–4716 (2005). [CrossRef] [PubMed]
  8. I. Miyamoto, K. Cvecek, and M. Schmidt, “Evaluation of nonlinear absorptivity in internal modification of bulk glass by ultrashort laser pulses,” Opt. Express19(11), 10714–10727 (2011). [CrossRef] [PubMed]
  9. I. Miyamoto, K. Cvecek, Y. Okamoto, M. Schmidt, and H. Helvajian, “Characteristics of laser absorption and welding in FOTURAN glass by ultrashort laser pulses,” Opt. Express19(23), 22961–22973 (2011). [CrossRef] [PubMed]
  10. T. Tamaki, W. Watanabe, and K. Itoh, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express14(22), 10460–10468 (2006). [CrossRef] [PubMed]
  11. K. Sugioka, M. Iida, H. Takai, and K. Micorikawa, “Efficient microwelding of glass substrates by ultrafast laser irradiation using a double-pulse train,” Opt. Lett.36(14), 2734–2736 (2011). [CrossRef] [PubMed]
  12. S. Wu, D. Wu, J. Xu, Y. Hanada, R. Suganuma, H. Wang, T. Makimura, K. Sugioka, and K. Midorikawa, “Characterization and mechanism of glass microwelding by double-pulse ultrafast laser irradiation,” Opt. Express20(27), 28893–28905 (2012). [CrossRef] [PubMed]
  13. M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett.93(23), 231112 (2008). [CrossRef]
  14. T. Yoshino, M. Matsumoto, Y. Ozeki, and K. Itoh, “Energy-dependent temperature dynamics in femtosecond laser microprocessing clarified by Raman temperature measurement,” Proc. SPIE8249, 82491D, 82491D-7 (2012). [CrossRef]
  15. M. Hermans, J. Gottmann, and A. Schiffer, “In-situ diagnostics on fs-laser induced modification of glasses for selective etching,” Proc. SPIE8244, 82440E, 82440E-10 (2012). [CrossRef]
  16. Schott D263 Material Information Sheet, http://www.schott.com/advanced_optics/english/download/ .
  17. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep.441(2-4), 47–189 (2007). [CrossRef]
  18. J. K. Ranka, R. W. Schirmer, and A. L. Gaeta, “Observation of pulse splitting in nonlinear dispersive media,” Phys. Rev. Lett.77(18), 3783–3786 (1996). [CrossRef] [PubMed]
  19. A. Vogel, J. Novak, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81(8), 1015–1047 (2005). [CrossRef]
  20. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B53(4), 1749–1761 (1996). [CrossRef]
  21. I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.101(4), 043506 (2007). [CrossRef]
  22. M. Sun, U. Eppelt, S. Russ, C. Hartmann, C. Siebert, J. Zhu, and W. Schulz, “Numerical analysis of laser ablation and damage in glass with multiple picosecond laser pulses,” Opt. Express21(7), 7858–7867 (2013). [CrossRef] [PubMed]
  23. Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, “Relaxation of dense electron plasma induced by femtosecond laser in dielectric materials,” Chin. Phys. Lett.23(1), 189–192 (2006). [CrossRef]
  24. R. Graf, A. Fernandez, M. Dubov, H. J. Brueckner, B. N. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Appl. Phys. B87(1), 21–27 (2007). [CrossRef]
  25. Y. Bellouard and M.-O. Hongler, “Femtosecond-laser generation of self-organized bubble patterns in fused silica,” Opt. Express19(7), 6807–6821 (2011). [CrossRef] [PubMed]
  26. J. Thomas, R. Bernard, K. Alti, A. K. Dharmadhikari, J. A. Dharmadhikari, A. Bhatnagar, C. Santhosh, and D. Mathur, “Pattern formation in transparent media using ultrashort laser pulses,” Opt. Commun.304, 29–38 (2013). [CrossRef]
  27. F. Yoshino, L. Shah, M. Fermann, A. Arai, and Y. Uehara, “Micromachining with a high repetition rate femtosecond laser,” J. Laser Micro Nanoeng.3(3), 157–162 (2008). [CrossRef]
  28. L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett.89(18), 186601 (2002). [CrossRef] [PubMed]
  29. M. Shimizu, M. Sakakura, M. Ohnishi, M. Yamaji, Y. Shimotsuma, K. Hirao, and K. Miura, “Three-dimensional temperature distribution and modification mechanism in glass during ultrafast laser irradiation at high repetition rates,” Opt. Express20(2), 934–940 (2012). [CrossRef] [PubMed]
  30. S. Hoehm, A. Rosenfeld, J. Krueger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silica,” J. Appl. Phys.112(1), 014901 (2012). [CrossRef]
  31. A. Vogel, “Roles of tunneling, multiphoton ionization, and cascade ionization for femtosecond optical breakdown in aqueous media,” 2009. http://www.dtic.mil/dtic/tr/fulltext/u2/a521817.pdf
  32. I. Miyamoto, K. Cvecek, and M. Schmidt, “Crack-free conditions in welding of glass by ultrashort laser pulse,” Opt. Express21(12), 14291–14302 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited