OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 11 — Nov. 1, 2013
  • pp: 1912–1917

Ar+ ion milling rib waveguides on nonlinear optical (Yb,Nb):RTP/RTP epitaxial layers

J. Cugat, A. Choudhary, R. Solé, J. Massons, D. Shepherd, F. Díaz, and M. Aguiló  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 11, pp. 1912-1917 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1324 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper we present the fabrication and characterization of rib waveguides made on (Yb,Nb):RbTiOPO4/RbTiOPO4 epitaxial layers. Liquid phase epitaxy (LPE) was used to grow planar thin films followed by Ar+ ion milling for surface rib fabrication. Here, we report the detailed fabrication procedure and characterization of the ribs. The study reveals good optical confinement and that type II second harmonic generation inside the rib was obtained, showing the generation of green light at 570 nm.

© 2013 Optical Society of America

OCIS Codes
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(230.7370) Optical devices : Waveguides
(310.2790) Thin films : Guided waves

ToC Category:
Nonlinear Optical Materials

Original Manuscript: July 25, 2013
Revised Manuscript: September 26, 2013
Manuscript Accepted: September 28, 2013
Published: October 21, 2013

J. Cugat, A. Choudhary, R. Solé, J. Massons, D. Shepherd, F. Díaz, and M. Aguiló, "Ar+ ion milling rib waveguides on nonlinear optical (Yb,Nb):RTP/RTP epitaxial layers," Opt. Mater. Express 3, 1912-1917 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. A. Thomas, S. C. Mayo, and B. E. Watts, “Crystal structures of RbTiOAsO4, KTiO(P0.56As0.42)O4, RbTiOPO4, and (Rb0.465K0.535)TiOPO4, analysis of pseudosymmetry in crystals of the KTiOPO4,” Acta Crystallogr. B48(4), 401–407 (1992). [CrossRef]
  2. R. F. Belt, G. Gashurov, and Y. S. Liu, “KTP as a harmonic generator for Nd:YAG lasers,” Laser Focus21, 110 (1985).
  3. C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. Skidmore, C. A. Ebbers, S. B. Sutton, and K. S. Jancaitis, “High-average-power 1 μm performance and frequency conversion of a diode-end-pumped Yb:YAG laser,” IEEE J. Quantum Electron.34(10), 2010–2019 (1998). [CrossRef]
  4. C. Zumsteg, J. D. Bierlein, and T. E. Gier, “KxRb1-xTiOPO4: a new nonlinear optical material,” J. Appl. Phys.47(11), 4980–4985 (1976). [CrossRef]
  5. R. Solé, V. Nikolov, I. Koseva, P. Peshev, X. Ruiz, C. Zaldo, M. J. Martín, M. Aguiló, and F. Díaz, “Conditions and possibilities for rare-earth doping of KTiOPO4 flux-growth single crystals,” Chem. Mater.9(12), 2745–2749 (1997). [CrossRef]
  6. J. J. Carvajal, R. Solé, J. Gavaldà, J. Massons, M. Aguiló, and F. Díaz, “Crystal growth of RbTiOPO4:Nb. A new nonlinear host for rare earth doping,” Cryst. Growth Des.1, 479–484 (2001).
  7. X. Mateos, V. Petrov, A. Peña, J. J. Carvajal, M. Aguiló, F. Díaz, P. Segonds, and B. Boulanger, “Laser operation of Yb3+ in the acentric RbTiOPO4 codoped with Nb5+,” Opt. Lett.32(13), 1929–1931 (2007). [CrossRef] [PubMed]
  8. Y. S. Oseledchik, A. I. Pisarevsky, A. L. Prosvirnin, V. V. Starshenko, and N. V. Svitanko, “Nonlinear optical properties of the flux grown RbTiOPO4 crystal,” Opt. Mater.3(4), 237–242 (1994). [CrossRef]
  9. Y. Guillen, B. Ménaert, J. P. Feve, P. Segonds, J. Douady, B. Boulanger, and O. Pacaud, “Crystal growth and refined Sellmeier equations over the complete transparency range of RbTiOPO4,” Opt. Mater.22(2), 155–162 (2003). [CrossRef]
  10. M. N. Satyanarayan, A. Deepthy, and H. L. Bhat, “Potassium titanyl phosphate and its isomorphs: growth, properties, and applications,” Crit. Rev. Solid State Mater. Sci.24(2), 103–191 (1999). [CrossRef]
  11. T. Suhara and M. Fujimura, Waveguide Nonlinear-Optic Devices (Springer, 2003).
  12. A. Peña, J. J. Carvajal, J. Massons, J. Gavaldà, F. Díaz, and M. Aguiló, “Yb:Ta:RbTiOPO4 a new strategy to further increase the lanthanide concentration in cystals of the KTiOPO4 family,” Chem. Mater.19, 4069–4076 (2007).
  13. J. Cugat, R. Solé, J. J. Carvajal, M. C. Pujol, X. Mateos, F. Díaz, and M. Aguiló, “Crystal growth and characterization of RbTi1-x-yYbxNbyOPO4/RbTiOPO4 (001) non-linear optical epitaxial layers,” CrystEngComm13(6), 2015–2022 (2011). [CrossRef]
  14. J. Cugat, R. Solé, J. J. Carvajal, X. Mateos, M. C. Pujol, J. Massons, F. Díaz, and M. Aguiló, “Efficient Type II phase-matching second-harmonic generation in Ba:Yb:Nb:RbTiOPO4/RbTiOPO4 waveguides,” Opt. Lett.36(10), 1881–1883 (2011). [CrossRef] [PubMed]
  15. W. Bolaños, J. J. Carvajal, X. Mateos, G. S. Murugan, A. Z. Subramanian, J. S. Wilkinson, E. Cantelar, D. Jaque, G. Lifante, M. Aguiló, and F. Díaz, “Mirrorless buried waveguide laser in monoclinic double tungstates fabricated by a novel combination of ion milling and liquid phase epitaxy,” Opt. Express18(26), 26937–26945 (2010). [CrossRef] [PubMed]
  16. R. Solé, V. Nikolov, A. Vilalta, J. J. Carvajal, J. Massons, J. Gavaldà, M. Aguiló, F. Díaz, J. Gavaldà, M. Aguiló, and F. Díaz, “Liquid phase epitaxy of KTiOPO4 on KTi1-xGexOPO4 substrates,” J. Cryst. Growth237, 602–607 (2002).
  17. A. Aznar, O. Silvestre, M. C. Pujol, R. Solé, M. Aguiló, and F. Díaz, “Liqud phase epitaxy crystal growth of monoclinic KLu1-xYbx(WO4)2 /KLu(WO4)2 layers,” Cryst. Growth Des.6(8), 1781–1787 (2006). [CrossRef]
  18. W. Bolaños, J. J. Carvajal, M. C. Pujol, X. Mateos, G. Lifante, M. Aguiló, and F. Díaz, “Epitaxial growth of lattice matched KY1-x-yGdxLuy(WO4)2 thin films on KY(WO4)2 substrates for waveguiding applications,” Cryst. Growth Des.9(8), 3525–3531 (2009). [CrossRef]
  19. W. P. Risk, S. D. Lau, R. Fontana, L. Lane, and Ch. Nadler, “Type II second harmonic generation and sum frequency mixing in uniform KTiOPO4 channel waveguides,” Appl. Phys. Lett.63(10), 1301–1303 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited