OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 11 — Nov. 1, 2013
  • pp: 1992–2002

Er:Lu2O3 – Laser-related spectroscopy

Larry D. Merkle, Nikolay Ter-Gabrielyan, Natalie J. Kacik, Tigran Sanamyan, Huaijin Zhang, Haohai Yu, Jiyang Wang, and Mark Dubinskii  »View Author Affiliations


Optical Materials Express, Vol. 3, Issue 11, pp. 1992-2002 (2013)
http://dx.doi.org/10.1364/OME.3.001992


View Full Text Article

Enhanced HTML    Acrobat PDF (1066 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The spectra of Er:Lu2O3 have been studied between 7 K and room temperature, particularly for transitions between the 4I13/2 and 4I15/2 manifolds. This includes the determination of energy levels for Er in the C2 site and some levels for the C3i site, as well as absorption and stimulated emission cross sections and radiative lifetimes. At cryogenic temperatures, the emission lines at 1576 and 1601 nm are promising for laser operation, and the unusual breadth of the 1535-nm zero line makes it attractive for diode laser pumping, thus providing the potential for very small quantum defect lasing.

© 2013 Optical Society of America

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(160.5690) Materials : Rare-earth-doped materials
(300.6250) Spectroscopy : Spectroscopy, condensed matter

ToC Category:
Laser Materials

History
Original Manuscript: August 20, 2013
Revised Manuscript: October 8, 2013
Manuscript Accepted: October 10, 2013
Published: October 30, 2013

Citation
Larry D. Merkle, Nikolay Ter-Gabrielyan, Natalie J. Kacik, Tigran Sanamyan, Huaijin Zhang, Haohai Yu, Jiyang Wang, and Mark Dubinskii, "Er:Lu2O3 – Laser-related spectroscopy," Opt. Mater. Express 3, 1992-2002 (2013)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-3-11-1992


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. H. Klein and W. J. Croft, “Thermal conductivity, diffusivity, and expansion of Y2O3, Y3Al5O12, and LaF3 in the range 77°-300°K,” J. Appl. Phys.38(4), 1603–1607 (1967). [CrossRef]
  2. V. Peters, E. Mix, L. Fornasiero, K. Petermann, G. Huber, and S. A. Basun, “Efficient Laser Operation of Yb3+:Sc2O3 and spectroscopic characterization of Pr3+ in cubic sesquioxides,” Laser Phys.10, 417–421 (2000).
  3. T. Li, K. Beil, C. Kränkel, and G. Huber, “Efficient high-power continuous wave Er:Lu2O3 laser at 2.85 μm,” Opt. Lett.37(13), 2568–2570 (2012). [CrossRef] [PubMed]
  4. C. Brandt, N. A. Tolstik, N. V. Kuleshov, K. Petermann, and G. Huber, “Inband pumped Er:Lu2O3 and Er,Yb:YVO4 Lasers near 1.6 µm for CO2 LIDAR,” in Advanced Solid-State Photonics, Technical Digest (CD) (Optical Society of America, 2010), paper AMB15.
  5. N. Ter-Gabrielyan, L. D. Merkle, A. Ikesue, and M. Dubinskii, “Ultralow quantum-defect eye-safe Er:Sc2O3 laser,” Opt. Lett.33(13), 1524–1526 (2008). [CrossRef] [PubMed]
  6. N. Ter-Gabrielyan, V. Fromzel, and M. Dubinskii, “Performance analysis of the ultra-low quantum defect Er3+:Sc2O3 [Invited],” Opt. Mater. Express1(3), 503–513 (2011). [CrossRef]
  7. D. C. Brown, “The Promise of Cryogenic Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron.11(3), 587–599 (2005). [CrossRef]
  8. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007). [CrossRef]
  9. I. B. Mukhin, O. V. Palashov, E. A. Khazanov, A. G. Vyatkin, and E. A. Perevezentsev, “Laser and thermal characteristics of Yb:YAG crystals in the 80-300 K temperature range,” Quantum Electron.41(11), 1045–1050 (2011). [CrossRef]
  10. J. B. Gruber, K. L. Nash, D. K. Sardar, U. V. Valiev, N. Ter-Gabrielyan, and L. D. Merkle, “Modeling optical transitions of Er3+(4f11) in C2 and C3i sites in polycrystalline Y2O3,” J. Appl. Phys.104, 023101 (2008). [CrossRef]
  11. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32(5), 751–767 (1976). [CrossRef]
  12. Volker Peters, “Growth and Spectroscopy of Ytterbium-Doped Sesquioxides,” dissertation, U. Hamburg (2001), http://www.physik.uni-hamburg.de/services /fachinfo/___Volltexte/Volker___Peters/Volker___Peters.pdf .
  13. K. Anduleit and G. Materlik, “A Holographic approach to point defect structure determination in inorganic crystals: Er-doped Sc2O3.,” Acta Crystallogr. A59(Pt 2), 138–142 (2003). [CrossRef] [PubMed]
  14. B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron.18(5), 925–930 (1982). [CrossRef]
  15. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross-Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron.28(11), 2619–2630 (1992). [CrossRef]
  16. N. Ter-Gabrielyan, L. D. Merkle, G. A. Newburgh, and M. Dubinskii, “Resonantly-Pumped Er3+:Y2O3 Ceramic Laser for Remote CO2 Monitoring,” Laser Phys.19(4), 867–869 (2009). [CrossRef]
  17. S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, “Resonantly Pumped Eyesafe Erbium Lasers,” IEEE J. Sel. Top. Quantum Electron.11(3), 645–657 (2005). [CrossRef]
  18. L. D. Merkle, N. Ter-Gabrielyan, and V. Fromzel, “Cryogenic laser properties of Er:YAG and Er:Sc2O3 – A comparison,” in Advanced Solid-State Photonics, Technical Digest (CD) (Optical Society of America, 2011), paper AWA02.
  19. D. K. Sardar, W. M. Bradley, J. J. Perez, J. B. Gruber, B. Zandi, J. A. Hutchinson, C. W. Trussell, and M. R. Kokta, “Judd-Ofelt analysis of the Er3+ (4f11) absorption intensities in Er3+ – doped garnets,” J. Appl. Phys.93(5), 2602–2607 (2003). [CrossRef]
  20. M. Brian, Walsh, “Judd-Ofelt Theory: Principles and practices,” in Advances in Spectroscopy for Lasers and Sensing, B. di Bartolo and O. Forte, eds. (Springer, 2006), pp. 403–433.
  21. A. A. Kaminskii, Crystalline Lasers: Physical Processes and Operating Schemes (CRC Press, 1996), pp. 274–294.
  22. M. Mitric, B. Antic, M. Balanda, D. Rodic, and M. Lj. Napijalo, “An x-ray diffraction and magnetic susceptibility study of YbxY2-xO3,” J. Phys. Condens. Matter9(20), 4103–4111 (1997). [CrossRef]
  23. G. Concas, G. Spano, E. Zych, and J. Trojan-Piegza, “ Nano- and microcrystalline Lu 2 O 3 :Eu phosphors: variations in occupancy of C 2 and S 6 sites by Eu 3+ ions, ” J. Phys. Condens. Matter17(17), 2597–2604 (2005). [CrossRef]
  24. L. D. Merkle and N. Ter-Gabrielyan, “Er3+ in Sc2O3 and Y2O3: Spectroscopy to elucidate laser behavior,” J. Lumin. 133, 254–256 (2013), doi: ; L. D. Merkle, N. Ter-Gabrielyan and K. J. Cote, International Conference on Luminescence 2011, paper ThII1. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited