OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 2 — Feb. 1, 2013
  • pp: 126–142

A micro-Raman spectroscopic investigation of He+-irradiation damage in LiNbO3

Hsu-Cheng Huang, Jerry I. Dadap, Ophir Gaathon, Irving P. Herman, Richard M. Osgood, Jr., Sasha Bakhru, and Hassaram Bakhru  »View Author Affiliations


Optical Materials Express, Vol. 3, Issue 2, pp. 126-142 (2013)
http://dx.doi.org/10.1364/OME.3.000126


View Full Text Article

Enhanced HTML    Acrobat PDF (5767 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Imaging micro-Raman spectroscopy is used to investigate the materials physics of radiation damage in congruent LiNbO3 as a result of high-energy (~MeV) He+ irradiation. This study uses a scanning confocal microscope for high-resolution three-dimensional micro-Raman imaging along with reflection optical microscopy (OM), and scanning electron microscopy (SEM). The tight optical excitation beam in the Raman system allows spatial mapping of the Raman spectra both laterally and normal to the irradiation axis with ≤1 μm resolution. Point defects and compositional changes after irradiation and surface deformation including blistering and microstress are observed in the stopping region. We demonstrate that the probed area of the damaged region is effectively “expanded” by a beveled geometry, formed through off-angle polishing of a crystal facet; this technique enables higher-resolution probing of the ion-induced changes in the Raman spectra and imaging of dislocation line defects that are otherwise inaccessible by conventional probing (depth and edge scan). Two-dimensional (2D) Raman imaging is also used to determine the defect uniformity across an irradiated sample and to examine the damage on a sample with patterned implantation. The effects of different He+ doses and energies, together with post-irradiation treatments such as annealing, are also discussed.

© 2013 OSA

OCIS Codes
(130.3730) Integrated optics : Lithium niobate
(160.4670) Materials : Optical materials
(300.6450) Spectroscopy : Spectroscopy, Raman
(310.3840) Thin films : Materials and process characterization

ToC Category:
Thin Films

History
Original Manuscript: November 26, 2012
Revised Manuscript: December 14, 2012
Manuscript Accepted: December 15, 2012
Published: December 21, 2012

Citation
Hsu-Cheng Huang, Jerry I. Dadap, Ophir Gaathon, Irving P. Herman, Richard M. Osgood, Sasha Bakhru, and Hassaram Bakhru, "A micro-Raman spectroscopic investigation of He+-irradiation damage in LiNbO3," Opt. Mater. Express 3, 126-142 (2013)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-3-2-126


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi A201(2), 253–283 (2004). [CrossRef]
  2. J. Rams, J. Olivares, P. J. Chandler, and P. D. Townsend, “Mode gaps in the refractive index properties of low-dose ion-implanted LiNbO3 waveguides,” J. Appl. Phys.87(7), 3199–3202 (2000). [CrossRef]
  3. M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett.73(16), 2293–2295 (1998). [CrossRef]
  4. A. Kling, M. F. da Silva, J. C. Soares, P. F. P. Fichtner, L. Amaral, and F. Zawislak, “Defect evolution and characterization in He-implanted LiNbO3,” Nucl. Instrum. Meth. B175–177(0), 394–397 (2001). [CrossRef]
  5. R. M. Roth, D. Djukic, Y. S. Lee, R. M. Osgood, S. Bakhru, B. Laulicht, K. Dunn, H. Bakhru, L. Wu, and M. Huang, “Compositional and structural changes in LiNbO3 following deep He+ ion implantation for film exfoliation,” Appl. Phys. Lett.89(11), 112906 (2006). [CrossRef]
  6. T. Volk and M. Wohlecke, Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching (Springer-Verlag, Berlin, Heidelberg, 2008).
  7. J. E. Spanier, M. Levy, I. P. Herman, R. M. Osgood, and A. S. Bhalla, “Single-crystal, mesoscopic films of lead zinc niobate-lead titanate: Formation and micro-Raman analysis,” Appl. Phys. Lett.79(10), 1510–1512 (2001). [CrossRef]
  8. J. E. Spanier, R. Robinson, F. Zhang, S.-W. Chan, and I. P. Herman, “Size-dependent properties of CeO2-y nanoparticles as studied by Raman scattering,” Phys. Rev. B64(24), 245407 (2001). [CrossRef]
  9. S. Banerjee, D.-I. Kim, R. D. Robinson, I. P. Herman, Y. Mao, and S. S. Wong, “Observation of Fano asymmetry in Raman spectra of SrTiO3 and CaxSr1-xTiO3 perovskite nanocubes,” Appl. Phys. Lett.89(22), 223130 (2006). [CrossRef]
  10. P. S. Dobal and R. S. Katiyar, “Studies on ferroelectric perovskites and Bi-layered compounds using micro-Raman spectroscopy,” J. Raman Spectrosc.33(6), 405–423 (2002). [CrossRef]
  11. D. N. Jamieson, S. Prawer, K. W. Nugent, and S. P. Dooley, “Cross-sectional Raman microscopy of MeV implanted diamond,” Nucl. Instrum. Meth. B106(1–4), 641–645 (1995). [CrossRef]
  12. A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett.8(3), 902–907 (2008). [CrossRef] [PubMed]
  13. I. De Wolf, “Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits,” Semicond. Sci. Technol.11(2), 139–154 (1996). [CrossRef]
  14. S. M. Kostritskii and P. Moretti, “Micro-Raman study of defect structure and phonon spectrum of He-implanted LiNbO3 waveguides,” Phys. Status Solidi C1(11), 3126–3129 (2004). [CrossRef]
  15. B.-U. Chen and A. C. Pastor, “Elimination of Li2O out-diffusion waveguide in LiNbO3 and LiTaO3,” Appl. Phys. Lett.30(11), 570–571 (1977). [CrossRef]
  16. J. G. Scott, S. Mailis, C. L. Sones, and R. W. Eason, “A Raman study of single-crystal congruent lithium niobate following electric-field repoling,” Appl. Phys., A Mater. Sci. Process.79(3), 691–696 (2004). [CrossRef]
  17. K. K. Wong, ed., Properties of Lithium Niobate (INSPEC, The Institution of Electrical Engineers, London, UK, 2002).
  18. G. R. Paz-Pujalt and D. D. Tuschel, “Depth profiling of proton exchanged LiNbO3 waveguides by micro-Raman spectroscopy,” Appl. Phys. Lett.62(26), 3411–3413 (1993). [CrossRef]
  19. A. Ofan, O. Gaathon, L. Vanamurthy, S. Bakhru, H. Bakhru, K. Evans-Lutterodt, and R. M. Osgood, “Origin of highly spatially selective etching in deeply implanted complex oxides,” Appl. Phys. Lett.93(18), 181906 (2008). [CrossRef]
  20. A. Ofan, O. Gaathon, L. Zhang, K. Evans-Lutterodt, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood, “Twinning and dislocation pileups in heavily implanted LiNbO3,” Phys. Rev. B83(6), 064104 (2011). [CrossRef]
  21. J. Ziegler, 2008, http://www.srim.org .
  22. A. Ridah, P. Bourson, M. D. Fontana, and G. Malovichko, “The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3,” J. Phys. Condens. Matter9(44), 9687–9693 (1997). [CrossRef]
  23. U. Schlarb, S. Klauer, M. Wesselmann, K. Betzler, and M. Wöhlecke, “Determination of the Li/Nb ratio in lithium niobate by means of birefringence and Raman measurements,” Appl. Phys., A Solids Surf.56(4), 311–315 (1993). [CrossRef]
  24. P. Galinetto, M. Marinone, D. Grando, G. Samoggia, F. Caccavale, A. Morbiato, and M. Musolino, “Micro-Raman analysis on LiNbO3 substrates and surfaces: compositional homogeneity and effects of etching and polishing processes on structural properties,” Opt. Lasers Eng.45(3), 380–384 (2007). [CrossRef]
  25. A. Ofan, L. Zhang, O. Gaathon, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood, “Spherical solid He nanometer bubbles in an anisotropic complex oxide,” Phys. Rev. B82(10), 104113 (2010). [CrossRef]
  26. E. Zolotoyabko, Y. Avrahami, W. Sauer, T. H. Metzger, and J. Peisl, “Strain profiles in He-implanted waveguide layers of LiNbO3 crystals,” Mater. Lett.27(1–2), 17–20 (1996). [CrossRef]
  27. Y. Avrahami and E. Zolotoyabko, “Structural modifications in He-implanted waveguide layers of LiNbO3,” Nucl. Instrum. Meth. B120(1–4), 84–87 (1996). [CrossRef]
  28. F. Schrempel, T. Gischkat, H. Hartung, E.-B. Kley, and W. Wesch, “Ion beam enhanced etching of LiNbO3,” Nucl. Instrum. Meth. B250(1–2), 164–168 (2006). [CrossRef]
  29. Y. Kong, J. Xu, X. Chen, C. Zhang, W. Zhang, and G. Zhang, “Ilmenite-like stacking defect in nonstoichiometric lithium niobate crystals investigated by Raman scattering spectra,” J. Appl. Phys.87(9), 4410–4414 (2000). [CrossRef]
  30. M. M. Sushchinskiy, ed., Inelastic Light Scattering in Crystals (Nova Science Publishers, 1987), Vol. 180, p. 81.
  31. J. F. Ziegler, ed., Handbook of Ion Implantation Technology (Elsevier Science Publishers B.V. Netherlands, 1992), p. 13.
  32. R. Srnanek, R. Kinder, B. Sciana, D. Radziewicz, D. S. McPhail, S. D. Littlewood, and I. Novotny, “Determination of doping profiles on bevelled GaAs structures by Raman spectroscopy,” Appl. Surf. Sci.177(1–2), 139–145 (2001). [CrossRef]
  33. W. Primak, “Expansion, crazing and exfoliation of lithium niobate on ion bombardment and comparison results for sapphire,” J. Appl. Phys.43(12), 4927–4933 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited