OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 2 — Feb. 1, 2013
  • pp: 184–193

Magnetic and magneto-optical quenching in (Mn2+, Sr2+) metaphosphate glasses

A. Winterstein, H. Akamatsu, D. Möncke, K. Tanaka, M. A. Schmidt, and L. Wondraczek  »View Author Affiliations

Optical Materials Express, Vol. 3, Issue 2, pp. 184-193 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1654 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Transition metal ions such as Mn2+, Fe2+, or Co2+ provide an interesting alternative to rare earth dopants in optically active glasses. In terms of their magneto-optical properties, they are not yet very well exploited. Here, we report on the effect of Mn2+ on Faraday rotation in a metaphosphate glass matrix along the join MnxSr1-x(PO3)2 with x = 0...1. Mn2+ shows small optical extinction in the visible spectral range and, compared to other transition metal ions, a high effective magnetic moment. At high Mn- levels, however, the magneto-optical activity of Mn2+ is strongly quenched due to ionic clustering. The magnetic properties of the heavily Mn2+-loaded phosphate matrix are dominated by a superexchange interaction in the Mn2+-O-Mn2+ bridge with antiparallel spin alignment between Mn2+ and O2- species. The apparent paramagnetic potential of Mn2+ species can therefore not be exploited at room temperature.

© 2013 OSA

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(160.3820) Materials : Magneto-optical materials

ToC Category:
Magneto-optic Materials

Original Manuscript: November 26, 2012
Revised Manuscript: January 3, 2013
Manuscript Accepted: January 7, 2013
Published: January 8, 2013

A. Winterstein, H. Akamatsu, D. Möncke, K. Tanaka, M. A. Schmidt, and L. Wondraczek, "Magnetic and magneto-optical quenching in (Mn2+, Sr2+) metaphosphate glasses," Opt. Mater. Express 3, 184-193 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Qiu and K. Hirao, “The Faraday effect in diamagnetic glasses,” J. Magn. Reson.13(05), 1358–1362 (1998).
  2. Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology New Series, III/19, Subvolumes a to i2, Magnetic Properties of Metals (Springer-Verlag, Heidelberg, 1986–1992).
  3. Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology New Series, II/2, II/8, II/10, II/11 and II/12a, Coordination and Organometallic Transition Metal Compounds (Springer-Verlag, Heidelberg, 1966–1984).
  4. Tables de Constantes et Données Numérique, Relaxation Paramagnetique (Masson, Paris, 1957), Vol. 7.
  5. J. J. Rhyne and T. R. McGuire, “Magnetism of rare-earth elements, alloys, and compounds,” IEEE Trans. Magn.8(1), 105–130 (1972). [CrossRef]
  6. C. Zener, “Interaction between the d-shells in the transition metals. III. Calculation of the Weiss factors in Fe, Co, and Ni,” Phys. Rev.83(2), 299–301 (1951). [CrossRef]
  7. C. Kittel, Einführung in die Festkörperphysik (Oldenburg Verlag, 1995).
  8. H. Akamatsu, S. Oku, K. Fujita, S. Murai, and K. Tanaka, “Magnetic properties of mixed-valence iron phosphate glasses,” Phys. Rev. B80(13), 134408 (2009). [CrossRef]
  9. R. Reisfeld, A. Kisilev, and C. K. Jørgensen, “Luminescence of manganese(II) in 24 phosphate glasses,” Chem. Phys. Lett.111(1–2), 19–24 (1984). [CrossRef]
  10. R. Verhelst, R. Kline, A. de Graat, and H. Hooper, “Magnetic properties of cobalt and manganese aluminosilicate glasses,” Phys. Rev. B11(11), 4427–4435 (1975). [CrossRef]
  11. J. Pommier, J. Ferré, and S. Senoussi, “Origin of the Faraday effect in a transparent magnetic Mn2+ glass,” J. Phys. C Solid State Phys.17(31), 5621–5633 (1984). [CrossRef]
  12. W. Nägele, K. Knorr, W. Prandtl, P. Convert, and J. L. Buevoz, “Neutron scattering study of spin correlations and phase transitions in amorphous manganese aluminosilicates,” J. Phys. C Solid State Phys.11(15), 3295–3305 (1978). [CrossRef]
  13. K. Knorr, R. Geller, and W. Prandl, “Mössbauer and neutron diffraction investigations of magnetic effects in Fe2Ca3Si3O12 and Al2Mn3Si3O12 glasses,” J. Magn. Magn. Mater.4(1-4), 258–261 (1977). [CrossRef]
  14. J. Ferré, J. Pommier, J. P. Renard, and K. Knorr, “Magnetic properties of an amorphous insulating spin glass: manganese aluminosilicate,” J. Phys. C Solid State Phys.13(19), 3697–3711 (1980). [CrossRef]
  15. G. C. Lau, T. Klimczuk, F. Ronning, T. M. McQueen, and R. J. Cava, “Magnetic properties of the garnet and glass forms of Mn3Al2Si3O12,” Phys. Rev. B80(21), 214414 (2009). [CrossRef]
  16. H. Akamatsu, K. Fujita, S. Murai, and K. Tanaka, “Magneto-optical properties of transparent divalent iron phosphate glasses,” Appl. Phys. Lett.92(25), 251908 (2008). [CrossRef]
  17. E. H. Williams, “The magnetic properties of some rare earth oxides as a function of the temperature,” Phys. Rev.12(2), 158–166 (1918). [CrossRef]
  18. M. Yamane and Y. Asahara, Glasses for Photonics (Cambridge University Press, 2005).
  19. M. A. Schmidt, L. Wondraczek, H. W. Lee, N. Granzow, N. Da, and P. St. J. Russell, “Complex Faraday rotation in microstructured magnetooptical fiber waveguides,” Adv. Mater.23(22-23), 2681–2688 (2011). [CrossRef]
  20. C. B. Rubinstein, S. B. Berger, L. G. Van Uitert, and W. A. Bonner, “Faraday rotation of rare‐earth (III) borate glasses,” J. Appl. Phys.35(8), 2338–2340 (1964). [CrossRef]
  21. N. Da, M. Peng, S. Krolikowski, and L. Wondraczek, “Intense red photoluminescence from Mn2+-doped (Na+; Zn2+) sulfophosphate glasses and glass ceramics as LED converters,” Opt. Express18(3), 2549–2557 (2010). [CrossRef] [PubMed]
  22. I. Konidakis, C. Varsamis, E. I. Kamitsos, D. Möncke, and D. Ehrt, “Structure and properties of mixed strontium-manganese metaphosphate glasses,” J. Phys. Chem. C114(19), 9125–9138 (2010). [CrossRef]
  23. D. Möncke, E. I. Kamitsos, A. Herrmann, D. Ehrt, and M. Friedrich, “Bonding and ion–ion interactions of Mn2+ ions in fluoride-phosphate and boro-silicate glasses probed by EPR and fluorescence spectroscopy,” J. Non-Cryst. Solids357(14), 2542–2551 (2011). [CrossRef]
  24. N. Zotov, H. Schlenz, B. Brendebach, H. Modrow, J. Hormes, F. Reinauer, R. Glaum, A. Kirfel, and C. Paulmann, “Effects of MnO-doping on the structure of sodium metaphosphate glasses,” Z. Naturforsch.58a, 419–428 (2003).
  25. R. K. Brow, “Review: the structure of simple phosphate glasses,” J. Non-Cryst. Solids263–264, 1–28 (2000). [CrossRef]
  26. P. A. Bingham and R. J. Hand, “Sulphate incorporation and glass formation in phosphate systems for nuclear and toxic waste immobilization,” Mater. Res. Bull.43(7), 1679–1693 (2008). [CrossRef]
  27. P. C. Schultz, “Optical absorption of the transition elements in vitreous silica,” J. Am. Ceram. Soc.57(7), 309–313 (1974). [CrossRef]
  28. G. Gao, S. Reibstein, M. Peng, and L. Wondraczek, “Dual-mode photoluminescence from Mn2+-doped Li,Zn-aluminosilicate glass ceramics,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B52(2), 59–63 (2011).
  29. H. Akamatsu, K. Tanaka, K. Fujita, and S. Murai, “Spin dynamics in oxide glass of Fe2O3–Bi2O3–B2O3 system,” J. Magn. Magn. Mater.310(2), 1506–1507 (2007). [CrossRef]
  30. N. Wiberg, E. Wiberg, and A. F. Holleman, Lehrbuch der Anorganischen Chemie (Walther de Gruyter, 2007).
  31. S. J. M. Liu, Photonic Devices (Cambridge University Press, 2009).
  32. J. H. Van Vleck and M. H. Hebb, “On the paramagnetic rotation of tysonite,” Phys. Rev.46(1), 17–32 (1934). [CrossRef]
  33. S. H. Lin and H. Eyring, “Magneto-optical rotation of transition metal complexes,” J. Chem. Phys.42(5), 1780–1784 (1965). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited