OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 2 — Feb. 1, 2013
  • pp: 205–215

Controlled self-assembly of gold nanoparticles mediated by novel organic molecular cages

Wounjhang Park, Kazunori Emoto, Yinghua Jin, Akihiro Shimizu, Venkata A. Tamma, and Wei Zhang  »View Author Affiliations


Optical Materials Express, Vol. 3, Issue 2, pp. 205-215 (2013)
http://dx.doi.org/10.1364/OME.3.000205


View Full Text Article

Enhanced HTML    Acrobat PDF (2599 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Artificial nanocomposite structures offer a pathway to the development of engineered materials with novel macroscopic properties. Manufacturing the composite materials in a highly efficient yet precise manner remains a challenge and self-assembly of functional nanomaterials offers an attractive solution. In this paper, shape-persistent three-dimensional cage molecules have been used, for the first time, for the self-assembly of gold nanoparticles. The modular construction of cage molecules allows for precise control of inter-particle spacing down to the molecular level. Furthermore, the ability to change the number and flexibility of binding sites provides a means to tune the self-assembly process. We have designed and synthesized two types of cage molecules equipped with different numbers of binding groups with different flexibility. A systematic analysis of the optical and structural characterizations show that the inter-particle spacing within the self-assembled structures are precisely controlled by the choice of the cage molecules. These results highlight that the new self-assembly approach based on molecular cage linkers provides nanometric control over the self-assembled structure.

© 2013 OSA

OCIS Codes
(160.3918) Materials : Metamaterials
(160.4236) Materials : Nanomaterials

ToC Category:
Metamaterials

History
Original Manuscript: October 19, 2012
Revised Manuscript: November 28, 2012
Manuscript Accepted: December 21, 2012
Published: January 9, 2013

Citation
Wounjhang Park, Kazunori Emoto, Yinghua Jin, Akihiro Shimizu, Venkata A. Tamma, and Wei Zhang, "Controlled self-assembly of gold nanoparticles mediated by novel organic molecular cages," Opt. Mater. Express 3, 205-215 (2013)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-3-2-205


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. H. Park and Y. Xia, “Assembly of Mesoscale particles over large areas and its application in fabricating tunable optical filters,” Langmuir15(1), 266–273 (1999). [CrossRef]
  2. P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, “Single-crystal colloidal multilayers of controlled thickness,” Chem. Mater.11(8), 2132–2140 (1999). [CrossRef]
  3. J. H. Lee, Q. Wu, and W. Park, “Fabrication and optical characterization of gold nanoshell opal,” J. Mater. Res.21(12), 3215–3221 (2006). [CrossRef]
  4. S. Kubo, A. Diaz, Y. Tang, T. S. Mayer, I. C. Khoo, and T. E. Mallouk, “Tunability of the refractive index of gold nanoparticle dispersions,” Nano Lett.7(11), 3418–3423 (2007). [CrossRef] [PubMed]
  5. J. H. Lee and W. Park, “Three-dimensional metallic photonic crystal based on self-assembled gold nanoshells,” Funct. Mater. Lett.01(01), 65–69 (2008). [CrossRef]
  6. J. H. Lee, Q. Wu, and W. Park, “Metal nanocluster metamaterial fabricated by the colloidal self-assembly,” Opt. Lett.34(4), 443–445 (2009). [CrossRef] [PubMed]
  7. V. A. Tamma, J. H. Lee, Q. Wu, and W. Park, “Visible frequency magnetic activity in silver nanocluster metamaterial,” Appl. Opt.49(7), A11–A17 (2010). [CrossRef] [PubMed]
  8. R. Pratibha, K. Park, I. I. Smalyukh, and W. Park, “Tunable optical metamaterial based on liquid crystal-gold nanosphere composite,” Opt. Express17(22), 19459–19469 (2009). [CrossRef] [PubMed]
  9. R. Pratibha, W. Park, and I. I. Smalyukh, “Colloidal gold nanosphere dispersions in smectic liquid crystals and thin nanoparticle-decorated smectic films,” J. Appl. Phys.107(6), 063511 (2010). [CrossRef]
  10. S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, “DNA-programmable nanoparticle crystallization,” Nature451(7178), 553–556 (2008). [CrossRef] [PubMed]
  11. D. Nykypanchuk, M. M. Maye, D. van der Lelie, and O. Gang, “DNA-guided crystallization of colloidal nanoparticles,” Nature451(7178), 549–552 (2008). [CrossRef] [PubMed]
  12. Y. Jin, B. A. Voss, R. D. Noble, and W. Zhang, “A shape-persistent organic molecular cage with high selectivity for the adsorption of CO2 over N2.,” Angew. Chem. Int. Ed. Engl.49(36), 6348–6351 (2010). [CrossRef] [PubMed]
  13. Y. Jin, B. A. Voss, A. Jin, H. Long, R. D. Noble, and W. Zhang, “Highly CO2-selective organic molecular cages: what determines the CO2 selectivity,” J. Am. Chem. Soc.133(17), 6650–6658 (2011). [CrossRef] [PubMed]
  14. Y. Jin, B. A. Voss, R. McCaffrey, C. T. Baggett, R. D. Noble, and W. Zhang, “Microwave-assisted syntheses of highly CO2-selective organic cage frameworks (OCFs),” Chem. Sci.3(3), 874–877 (2012). [CrossRef]
  15. C.-X. Zhang, Q. Wang, H. Long, and W. Zhang, “A highly C70 selective shape-persistent rectangular prism constructed through one-step alkyne metathesis,” J. Am. Chem. Soc.133(51), 20995–21001 (2011). [CrossRef] [PubMed]
  16. C.-X. Zhang, H. Long, and W. Zhang, “A C84 selective porphyrin macrocycle with an adaptable cavity constructed through alkyne metathesis,” Chem. Commun. (Camb.)48(49), 6172–6174 (2012). [CrossRef] [PubMed]
  17. J. Lohrman, C. Zhang, W. Zhang, and S. Q. Ren, “Semiconducting carbon nanotube and covalent organic polyhedron-C60 nanohybrids for light harvesting,” Chem. Commun. (Camb.)48(67), 8377–8379 (2012). [CrossRef] [PubMed]
  18. A. Bilić, J. R. Reimers, and N. S. Hush, “Adsorption of pyridine on the gold(111) surface: implications for ‘alligator clips’ for molecular wires,” J. Phys. Chem. B106(26), 6740–6747 (2002). [CrossRef]
  19. S. Y. Quek, M. Kamenetska, M. L. Steigerwald, H. J. Choi, S. G. Louie, M. S. Hybertsen, J. B. Neaton, and L. Venkataraman, “Mechanically controlled binary conductance switching of a single-molecule junction,” Nat. Nanotechnol.4(4), 230–234 (2009). [CrossRef] [PubMed]
  20. R. Kaminker, M. Lahav, L. Motiei, M. Vartanian, R. Popovitz-Biro, M. A. Iron, and M. E. van der Boom, “Molecular structure-function relations of the optical properties and dimensions of gold nanoparticle assemblies,” Angew. Chem. Int. Ed. Engl.49(7), 1218–1221 (2010). [CrossRef] [PubMed]
  21. W. Zhang and J. S. Moore, “Shape-persistent macrocycles: structures and synthetic approaches from arylene and ethynylene building blocks,” Angew. Chem. Int. Ed. Engl.45(27), 4416–4439 (2006). [CrossRef] [PubMed]
  22. A. Yu, Z. Liang, J. Cho, and F. Caruso, “Nanostructured electrochemical sensor based on dense gold nanoparticle films,” Nano Lett.3(9), 1203–1207 (2003). [CrossRef]
  23. Y. Joseph, I. Besnard, M. Rosenberger, B. Guse, H.-G. Nothofer, J. M. Wessels, U. Wild, A. Knop-Gericke, D. Su, R. Schlogl, A. Yasuda, and T. Vossmeyer, “Self-assembled gold nanoparticle/ alkanedithiol films: preparation, electron microscopy, XPS-analysis, charge transport, and vapor-sensing properties,” J. Phys. Chem. B107(30), 7406–7413 (2003). [CrossRef]
  24. A. Cunningham, S. Mühlig, C. Rockstuhl, and T. Bürgi, “Coupling of plasmon resonances in tunable layered arrays of gold nanoparticles,” J. Phys. Chem. C115(18), 8955–8960 (2011). [CrossRef]
  25. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag GmbH & Co. KgaA, 2004).
  26. T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett.4(9), 1627–1631 (2004). [CrossRef]
  27. W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B Condens. Matter39(14), 9852–9858 (1989). [CrossRef] [PubMed]
  28. V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys. Condens. Matter17(25), 3717–3734 (2005). [CrossRef] [PubMed]
  29. J. C. M. Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. Lond. A203(359-371), 385–420 (1904). [CrossRef]
  30. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  31. See, for example, G. W. Milton, Theory of Composites (Cambridge University Press, 2004).
  32. B. Abeles and J. I. Gittleman, “Composite material films: optical properties and applications,” Appl. Opt.15(10), 2328–2332 (1976). [CrossRef] [PubMed]
  33. V. Yannopapas, A. Modinos, and N. Stefanou, “Optical properties of metallodielectric photonic crystals,” Phys. Rev. B60(8), 5359–5365 (1999). [CrossRef]
  34. N. Stefanou, V. Karathanos, and A. Modinos, “Scattering of electromagnetic waves by periodic structures,” J. Phys. Condens. Matter4(36), 7389–7400 (1992). [CrossRef]
  35. N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM 2: a new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun.132(1-2), 189–196 (2000). [CrossRef]
  36. A. Moroz and C. Sommers, “Photonic band gaps of three-dimensional face-centered cubic lattices,” J. Phys. Condens. Matter11(4), 997–1008 (1999). [CrossRef]
  37. V. Yannopapas, “Effective-medium description of disordered photonic alloys,” J. Opt. Soc. Am. B23(7), 1414–1419 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: PDF (481 KB)      QuickTime
» Media 2: PDF (209 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited