OSA's Digital Library

Optical Materials Express

Optical Materials Express

  • Editor: David J. Hagan
  • Vol. 3, Iss. 2 — Feb. 1, 2013
  • pp: 237–247

Synthesis and characterization of ZnO/ZnMgO multiple quantum wells by molecular beam epitaxy

Hsiang-Chen Wang, Che-Hao Liao, Yu-Lun Chueh, Chih-Chung Lai, Li-His Chen, and Raymond Chien-Chao Tsiang  »View Author Affiliations


Optical Materials Express, Vol. 3, Issue 2, pp. 237-247 (2013)
http://dx.doi.org/10.1364/OME.3.000237


View Full Text Article

Enhanced HTML    Acrobat PDF (1239 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The growth of single and multiple (three) ZnO/ZnMgO quantum well samples on sapphire substrates, through a two-step temperature variation growth of ZnO buffer layers by molecular beam epitaxy (MBE), were investigated. For single quantum well (QW) growth, the thicker first ZnMgO barrier layer about 220 nm on the high-temperature growth ZnO (HT-ZnO) buffer layer, accumulated larger compressive stress, to achieve higher quality ZnO/ZnMgO QW growth. In the temperature-dependent photoluminescence (PL) results, the obvious S-shape variation of emission peak positions presented the stronger exciton confinement ability of QW in the higher magnesium concentrations of ZnMgO barrier layer growth. Compared to the control sample, the quantum confinement resulted in blueshift PL peaks of QW samples at low temperature. The multiple quantum well (MQWs) structure increased the exciton confinement ability to enhance the light emission efficiency of the sample. The three ZnO/ZnMgO MQWs structures were found clearly by high-resolution transmission electron microscopy.

© 2013 OSA

OCIS Codes
(160.2100) Materials : Electro-optical materials
(160.5293) Materials : Photonic bandgap materials
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Semiconductors

History
Original Manuscript: December 17, 2012
Revised Manuscript: January 14, 2013
Manuscript Accepted: January 14, 2013
Published: January 15, 2013

Citation
Hsiang-Chen Wang, Che-Hao Liao, Yu-Lun Chueh, Chih-Chung Lai, Li-His Chen, and Raymond Chien-Chao Tsiang, "Synthesis and characterization of ZnO/ZnMgO multiple quantum wells by molecular beam epitaxy," Opt. Mater. Express 3, 237-247 (2013)
http://www.opticsinfobase.org/ome/abstract.cfm?URI=ome-3-2-237


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. C. Look, “Recent advances in ZnO materials and devices,” Mater. Sci. Eng. B80(1-3), 383–387 (2001). [CrossRef]
  2. D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, “Optically pumped lasing of ZnO at room temperature,” Appl. Phys. Lett.70(17), 2230–2232 (1997). [CrossRef]
  3. T. Makino, Y. Segawa, and M. Kawasaki, “Analytical study on exciton - longitudinal - optical - phonon coupling and comparison with experiment for ZnO quantum wells,” J. Appl. Phys.97(10), 106111 (2005). [CrossRef]
  4. H. Long, G. Fang, S. Li, X. Mo, H. Wang, H. Huang, Q. Jiang, J. Wang, and X. Zhao, “A ZnO/ZnMgO multiple-quantum-well ultraviolet random laser diode,” IEEE Electron Device Lett.32(1), 54–56 (2011). [CrossRef]
  5. J. H. Lim, C. K. Kang, K. K. Kim, I. K. Park, D. K. Hwang, and S. J. Park, “UV electroluminescence emission from ZnO light-emitting diodes grown by high-temperature radiofrequency sputtering,” Adv. Mater. 18(20), 2720–2724 (2006). [CrossRef]
  6. T. Makino, Y. Segawa, M. Kawasaki, and H. Koinuma, “Optical properties of excitons in ZnO-based quantum well heterostructures,” Semicond. Sci. Technol.20(4), S78–S91 (2005). [CrossRef]
  7. G. Coli and K. K. Bajaj, “Excitonic transitions in ZnO/MgZnO quantum well heterostructures,” Appl. Phys. Lett.78(19), 2861–2863 (2001). [CrossRef]
  8. T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura, T. Yasuda, and H. Koinuma, “Band gap engineering based on MgxZn1−xO and CdyZn1−yO ternary alloy films,” Appl. Phys. Lett.78(9), 1237–1239 (2001). [CrossRef]
  9. T. Gruber, C. Kirchner, R. Kling, F. Reuss, A. Waag, F. Bertram, D. Forster, J. Christen, and M. Schreck, “Optical and structural analysis of ZnCdO layers grown by metalorganic vapor-phase epitaxy,” Appl. Phys. Lett.83(16), 3290–3292 (2003). [CrossRef]
  10. V. A. Coleman, M. Buda, H. H. Tan, C. Jagadish, M. R. Phillips, K. Koike, S. Sasa, M. Inoue, and M. Yano, “Observation of blue shifts in ZnO/ZnMgO multiple quantum well structures by ion-implantation induced intermixing,” Semicond. Sci. Technol.21(3), L25–L28 (2006). [CrossRef]
  11. W. I. Park, G. C. Yi, and H. M. Jang, “Metalorganic vapor-phase epitaxial growth and photoluminescent properties of Zn1−xMgxO(0 ≤ x ≤ 0.49) thin films,” Appl. Phys. Lett.79(13), 2022–2024 (2001). [CrossRef]
  12. M. Brandt, H. Wenckstern, M. Stölzel, H. Hochmuth, M. Lorenz, and M. Grundmann, “Semiconducting oxide heterostructures,” Semicond. Sci. Technol.26(1), 014040 (2011). [CrossRef]
  13. R. Thierry, G. Perillat-Merceroz, P. H. Jouneau, P. Ferret, and G. Feuillet, “Core-shell multi-quantum wells in ZnO/ZnMgO nanowires with high optical efficiency at room temperature,” Nanotechnology23(8), 085705 (2012). [CrossRef] [PubMed]
  14. X. Q. Gu, L. P. Zhu, Z. Z. Ye, H. P. He, Y. Z. Zhang, F. Huang, M. X. Qiu, Y. J. Zeng, F. Liu, and W. Jaeger, “Room-temperature photoluminescence from ZnO/ZnMgO multiple quantum wells grown on Si(111) substrates,” Appl. Phys. Lett.91(2), 022103 (2007). [CrossRef]
  15. T. Makino, C. H. Chia, N. T. Tuan, H. D. Sun, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinuma, “Room-temperature luminescence of excitons in ZnO/(Mg,Zn) O multiple quantum wells on lattice-matched substrates,” Appl. Phys. Lett.77(7), 975–977 (2000). [CrossRef]
  16. C. R. Hall, L. V. Dao, K. Koike, S. Sasa, H. H. Tan, M. Inoue, M. Yano, C. Jagadish, and J. A. Davis, “Using graded barriers to control the optical properties of ZnO/Zn0.7Mg0.3O quantum wells with an intrinsic internal electric field,” Appl. Phys. Lett.96(19), 193117 (2010). [CrossRef]
  17. R. A. Arif, Y.-K. Ee, and N. Tansu, “Polarization engineering via staggered InGaN quantum wells for radiative efficiency enhancement of light emitting diodes,” Appl. Phys. Lett.91(9), 091110 (2007). [CrossRef]
  18. H. P. Zhao, G. Y. Liu, X. H. Li, R. A. Arif, G. S. Huang, J. D. Poplawsky, S. Tafon Penn, V. Dierolf, and N. Tansu, “Design and characteristics of staggered InGaN quantum well light-emitting diodes in the green spectral regimes,” IET Optoelectron.3(6), 283–295 (2009). [CrossRef]
  19. H. P. Zhao, G. Y. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express19(S4Suppl 4), A991–A1007 (2011). [CrossRef] [PubMed]
  20. M. Brandt, M. Lange, M. Stölzel, A. Müller, G. Benndorf, J. Zippel, J. Lenzner, M. Lorenz, and M. Grundmann, “Control of interface abruptness of polar MgZnO/ZnO quantum wells grown by pulsed laser deposition,” Appl. Phys. Lett.97(5), 052101 (2010). [CrossRef]
  21. J. Zhang, H. Zhao, and N. Tansu, “Effect of crystal-field split-off hole and heavy-hole bands crossover on gain characteristics of high Al-content AlGaN quantum well lasers,” Appl. Phys. Lett.97(11), 111105 (2010). [CrossRef]
  22. J. Zhang, H. Zhao, and N. Tansu, “Large optical gain AlGaN-delta-GaN quantum wells laser active regions in mid- and deep-ultraviolet spectral regimes,” Appl. Phys. Lett.98(17), 171111 (2011). [CrossRef]
  23. Y. Taniyasu and M. Kasu, “Polarization property of deep-ultraviolet light emission from C-plane AlN/GaN short-period superlattices,” Appl. Phys. Lett.99(25), 251112 (2011). [CrossRef]
  24. E. Francesco Pecora, W. Zhang, A. Yu. Nikiforov, L. Zhou, D. J. Smith, J. Yin, R. Paiella, L. Dal Negro, and T. D. Moustakas, “Sub-250 nm room-temperature optical gain from AlGaN/AlN multiple quantum wells with strong band-structure potential fluctuations,” Appl. Phys. Lett.100(6), 061111 (2012). [CrossRef]
  25. G. Liu, J. Zhang, X. H. Li, G. S. Huang, T. Paskova, K. R. Evans, H. Zhao, and N. Tansu, “Metalorganic vapor phase epitaxy and characterizations of nearly-lattice-matched AlInN alloys on GaN/sapphire templates and free-standing GaN substrates,” J. Cryst. Growth340(1), 66–73 (2012). [CrossRef]
  26. R. B. Chung, F. Wu, R. Shivaraman, S. Keller, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Growth study and ipurity characterization of AlxIn1−xN grown by metal organic chemical vapor deposition,” J. Cryst. Growth324(1), 163–167 (2011). [CrossRef]
  27. J. G. Kim, S. K. Han, S. M. Yang, S. K. Hong, J. W. Lee, J. Y. Lee, J. H. Song, Y. E. Ihm, D. Kim, J. S. Park, H. J. Lee, and T. Yao, “Effects of low temperature ZnO and MgO buffer thicknesses on properties of ZnO films grown on (0001) Al2O3 substrates by plasma-assisted molecular beam epitaxy,” Thin Solid Films519(1), 223–227 (2010). [CrossRef]
  28. A. Bakin, J. Kioseoglou, B. Pecz, A. El-Shaer, A.-C. Mofor, J. Stoemenos, and A. Waag, “Misfit reduction by a spinel layer formed during the epitaxial growth of ZnO on sapphire using a MgO buffer layer,” J. Cryst. Growth308(2), 314–320 (2007). [CrossRef]
  29. Y. Chen, H. J. Ko, S. K. Hong, and T. Yao, “Layer-by-layer growth of ZnO epilayer on Al2O3 (0001) by using a MgO buffer layer,” Appl. Phys. Lett.76(5), 559–561 (2000). [CrossRef]
  30. Y. Chen, S. K. Hong, H. J. Ko, V. Kirshner, H. Wenisch, T. Yao, K. Inaba, and Y. Segawa, “Effects of an extremely thin buffer on heteroepitaxy with large lattice mismatch,” Appl. Phys. Lett.78(21), 3352–3354 (2001). [CrossRef]
  31. H. Kato, K. Miyamoto, M. Sano, and T. Yao, “Polarity control of ZnO on sapphire by varying the MgO buffer layer thickness,” Appl. Phys. Lett.84(22), 4562–4564 (2004). [CrossRef]
  32. Y. J. Chen, Y. Y. Shih, C. H. Ho, J. H. Du, and Y. P. Fu, “Effect of temperature on lateral growth of ZnO grains grown by MOCVD,” Ceram. Int.36(1), 69–73 (2010). [CrossRef]
  33. S. Y. Ting, P. J. Chen, H. C. Wang, C. H. Liao, W. M. Chang, Y. P. Hsieh, and C. C. Yang, “Crystallinity improvement of ZnO thin film on different buffer layers grown by MBE,” J. Nanomater.2012, 6 (2012), doi:. [CrossRef]
  34. K. Koike, G. Y. Takada, K. Fujimoto, S. Sasa, M. Inoue, and M. Yano, “Characterization of [ZnO]m[ZnMgO]n multiple quantum wells grown by molecular beam epitaxy,” Physica E32(1-2), 191–194 (2006). [CrossRef]
  35. S. Y. O, C.-G. Lee, A. J. Shapiro, W. F. Egelhoff, M. D. Vaudin, J. L. Ruglovsky, J. Mallett, and P. W. T. Pong, “X-ray diffraction study of the optimization of MgO growth conditions for magnetic tunnel junctions,” J. Appl. Phys.103(7), 07A920 (2008). [CrossRef]
  36. A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, “MgxZn1−xO as a II–VI widegap semiconductor alloy,” Appl. Phys. Lett.72(19), 2466–2468 (1998). [CrossRef]
  37. A. El-Shaer, A. Bakin, M. Al-Suleiman, S. Ivanov, A. Che Mofor, and A. Waag, “Growth of wide band gap wurtzite ZnMgO layers on (0001) Al2O3 by radical-source molecular beam epitaxy,” Superlattices Microstruct.42(1-6), 129–133 (2007). [CrossRef]
  38. H. Matsui, H. Tabata, N. Hasuike, and H. Harima, “Critical thickness and lattice relaxation of Mg-rich strained Mg0.37Zn0.63O (0001) layers towards multi-quantum-wells,” J. Appl. Phys.99(2), 024902 (2006). [CrossRef]
  39. K. Koike, I. Nakashima, K. Hashimoto, S. Sasa, M. Inoue, and M. Yano, “Characteristics of a Zn0.7Mg0.3O/ZnO heterostructure field-effect transistor grown on sapphire substrate by molecular-beam epitaxy,” Appl. Phys. Lett.87(11), 112106 (2005). [CrossRef]
  40. T. Gruber, C. Kirchner, R. Kling, F. Reuss, and A. Waag, “ZnMgO epilayers and ZnO-ZnMgO quantum wells for optoelectronic applications in the blue and UV spectral region,” Appl. Phys. Lett.84(26), 5359–5361 (2004). [CrossRef]
  41. T. Makino, K. Tamura, C. H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, and H. Koinuma, “Effect of MgZnO-layer capping on optical properties of ZnO epitaxial layers,” Appl. Phys. Lett.81(12), 2172–2174 (2002). [CrossRef]
  42. D. Sun, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinuma, “Phonon replicas in ZnO/ZnMgO multiquantum wells,” J. Appl. Phys.91(10), 6457–6460 (2002). [CrossRef]
  43. Y. Chen, F. Jiang, L. Wang, C. Zheng, J. Dai, Y. Pu, and W. Fang, “Structural and luminescent properties of ZnO epitaxial film grown on Si(111) substrate by atmospheric-pressure MOCVD,” J. Cryst. Growth275(3-4), 486–491 (2005). [CrossRef]
  44. H. Matsui, H. Tabata, N. Hasuike, and H. Harima, “Critical thickness and lattice relaxation of Mg-rich strained Mg0.37Zn0.63O (0001) layers towards multi-quantum-wells,” J. Appl. Phys.99(2), 024902 (2006). [CrossRef]
  45. M. Shimizu, Y. Kawaguchi, K. Hiramatsu, and N. Sawaki, “Metalorganic vapor phase epitaxy of thick InGaN on sapphire substrate,” Jpn. J. Appl. Phys. Part 136(Part 1, No. 6A), 3381–3384 (1997). [CrossRef]
  46. S. Pereira, M. R. Correia, E. Pereira, C. Trager-Cowan, F. Sweeney, K. P. O’Donnell, E. Alves, N. Franco, and A. D. Sequeira, “Structural and optical properties of InGaN/GaN layers close to the critical layer thickness,” Appl. Phys. Lett.81(7), 1207–1209 (2002). [CrossRef]
  47. T. Sugahara, M. Hao, T. Wang, D. Nakagawa, Y. Naoi, K. Nishino, and S. Sakai, “Role of dislocation in InGaN phase separation,” Jpn. J. Appl. Phys. Part 237(Part 2, No. 10B), L1195–L1198 (1998). [CrossRef]
  48. T. Makino, N. T. Tuan, H. D. Sun, C. H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, T. Suemoto, H. Akiyama, M. Baba, S. Saito, T. Tomita, and H. Koinuma, “Temperature dependence of near ultraviolet photoluminescence in ZnO/(Mg,Zn)O multiple quantum wells,” Appl. Phys. Lett.78(14), 1979–1981 (2001). [CrossRef]
  49. K. Wu, H. He, Y. Lu, J. Huang, and Z. Ye, “Dominant free exciton emission in ZnO nanorods,” Nanoscale4(5), 1701–1706 (2012). [CrossRef] [PubMed]
  50. A. Bakin, J. Kioseoglou, B. Pecz, A. El-Shaer, A.-C. Mofor, J. Stoemenos, and A. Waag, “Misfit reduction by a spinel layer formed during the epitaxial growth of ZnO on sapphire using a MgO buffer layer,” J. Cryst. Growth308(2), 314–320 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited